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ABSTH.ACT 

BEST ROTATED MINIMAX APPROXIMATION 
(Order No. ___ ) 

by 

Richard Orner Michaud, Ph.D. 

Boston University Graduate School, 1970 

lvlajor Professor: Robin E. Esch, Professor of J\1athematics 

fo this dissertation we consider the rninirriax approxi1nation of 

functions f(x) E"C[O, l] rotated about the origin, and the characteriza­

tion of the optimal rotation, a/, of f in the sense of least m.inirna.x error 

over all possible rotations. The paper divides naturally into two 

sections: a) Existence, uniqueness, and characterization for u~isolvent 

rninirr1ax approximation for each rotation QI of £. These results are 

applications of Du:-i.ham (1967). b) Existence, non-uniqueness, and 
_,_ 

com.putation of ot; derivation of necessary conditions for the minimax 
.,_ ,,-

approxi:rnation at QI , which are applications of Curtis and Powell (1966); 

and docu:·nentation of the effect of rotation on the minimax error by 

tnca,1s of con1.puted results. The pc1.ramcter space for the mini1nax 

error for the rotations of £ is [ 0, 11]. l--Ience, a parameter search for 

··-
the cornputation of a'•· is feasible. However, we aJ so designed an 

-·-
algorithrn for co1nputing o:-·- by 1neans of an iterated linear programming 

approach due to Esch and Eastman ( 1968). In most: of tl1.e cases <vve have 
_,_ 

examined, the error of approxi1nation at a··· has n-t-2, r2thcr than the 

ne,:;essary n+ 1, equioscillating extrc1na. However, we show ~Jy cxa1nple 
_,_ 
-,-

that the existence of n+2 equioscillating c.:xtrema at a· is neither 

necessary, nor sufficient, nor locally sufficient. Sornc Lypical results 
.,. 

a re giv .n \Vhich shO\v thaL a quadralic miuj rn.ax a pµro~in1alion al cv"· 



• I 

fr ·qucn!.)y has sn1.allcr error than a cubic 1ninimax approximation. 

If the rninimax error at a 
~:~ 

1s comparable to the minimax error of a 

}:~ 

higher degree approximation, then tbc mini1nax approxirn.ation at a 

lV 

is, jn general, a better curve fit, since it has fewer changes in direction. 

A fai.:.:ly co1nplete theory for straight line approximation is presented. 

Fin2.lly, son1c theoretical results on the form of the error function at 
,,, 

a miDimax arproximation at_ 0 1 ' are given, which are extensions of 

sor:r1c results due to Tornheim (1950). 
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CHAPTER I 

INTRODUCTlON 

The central theme of this paper is the minimax approxirna tion of a function 

f rotated by an angle cv about tlie origin and the characi:erization of the angle of 

rotcttion of least mini.max error. The resulting curve in the X, Y coordinate 

system will be referred to as an "lY- rotation" of f. 

Lct f(x) be an arbitrary given continuous real-valued function on [O, I]. 

Let G = {g(A, x)} be a given set of admissible approxiJT,ations and let 11 • i! be the 

uniform or L norm on [0, l]. Then a minimax or best approximation (B. A.) to 
ex, 

f is a g-r--~ g(A•;c ,x) belonging to G such that 

llf(t)- g·il-(t)!! $ II f(t)- g(t)l1 = sup lf(t) - g(t) I 
u[O, J J 

for. all g E' G. Here A stands for the real parameters a 1, a
2

, ... , an of the approx­

inuting function g. 

The class of approximations which we shall conside!r is the uni.solvent cla,:;s 

of ~,on1c fixed deg-reP. n 

Definition I. l: 'Ihe class G of n-parameter conti11uous functions is said 
11 

to be uni.s:.ilvcnt of deg-rei:! n on La, bJ, if for any distinct points x 1, ... , x of 
. . n 

[a,b] arni any real nurn.bers y 1, ... ,y
11 

tlierc is a unique g(A,x) E'Gn such that the 

equc1tions 

(<(A, :-r .) :::: y. ' 
b • l l i=l, ... ,11 

arc satisfied. 

'TI1is ckfinition implies that the ctiffcrcricc of two distinct g1, g2 c G
11 

can 

have ;H 111utii. n-1 zeLO:,. 

We will wi:::;h to c...onsidcr Lwo spci:.:i[!.] ca.Hes of unisolvc'.ll functi:Jnc-: of 
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degree n: rl11e class L of Chebychcv 01· gcu,~ralizcd pol.ynomi.'.1.1 approximations 
11 

n 
(Rice:, 196-1, p. 55) of tl1e form: ~ a. (!,.(x); and P _1, the polynombl class of 

i=l 1 1 n 

degree n- J or less. TI1e class P
11

_ J has 1J1e addition;_il property of b~ing ani.sol-

vent over any closed interval. 

Let f be parc.unctrized by tdO, 1] :111ci let y (t) denote the point f(t) .10U:.t2.d 
(Y. 

by a1;1 angle CY.. We denote the abcissa of tlLC poillt v (t) in die X, Y coon.ll;i~:.tc 
, Cl 

The error function of :m ct- .rotation uf f by g E Gn i.s: 

e (t) =y (t)-g(A,x (t)) 
CY. (Y_ O'. 

e (t) is evidently periodic in".!. wi.th p8riod ?.·;··. 
(Y 

We define e'~(O:') as the minimax er .ror fo:r. -1.:1 rr rotation of.[, a.Hcl c·\'·(c(") 

as the infi.mum of e-l;. (r,) for all rotation.s u E'[O, 2,1 J. i, Lest rctatecl app:::o·;,:.irnatiou 

(13.R.A.) is a g'~,cE"G such that 1:;·l",s is a B.A. for an (Y.-):• .. rotfttion oi' f c1nrl the 
('I_" 11 "O:'." 

uniform erro.c of app:roxir,12.Uon is e~\o:•:;). 

We will be concerried with secki11g !he: ~ol~1tion to tvrn :::.lJ.sJ:,,;s 0.f: p:c·cJ1J1erns: 

1) Existence of B. A. for any cr1·otat:icm off and cl1:u::1cteri;;ati0n an.Ci 

uniqncncss of B. A. in terms of the sign u[ the crrur vt extrema o'[ t.lie r:i:ror 

fonchon e· (t) for the approxirnatinbo- cLss G . a· n 

7.) Th•.~ existence, urtiqu2ncss, an.ct con1[JL1Lation of c/<, tlte characlerization 

of B. R. A., for the Chd1ychev and polynorni: 11 DPi:iloxim,1.ting cfosse.s, and t:i1E' 

docur;:1c.:il~fltion 8.f tli<~ cifect cf rotation OP tl1c: re inimax error. 

P , the minimax errur is inv:.i.ri&.nt with rcs;,cct to a translation c.f !ire functiC'n, n-1 

but the oricnlation 0£ f with rcsrcct to rotation c;rn sign:fic,rntly e:HccL tii1..~ mrni-

rrw.x error.. If our pm pose i'., to compute values off accurately on sorne dosed 
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we wished to fair poiJ1ts f(x.), i = 1, ... , N, given as design specification:.:; for 
. l 

some physical surface, it is often the case that there is no a priori reason to 

prefer one orientation over another. If accuracy of approximation is tbe only 

factor to be considered, then we can dispense with questions of optimal orienta­

tions of the data by allowir1g sufficiently high degree polynomial approximations. 

But f?r many applications, particularly in computer-aided design, a curve fair­

ing process requires the approximation to be relatively free of extraneous 

cha11ges ir1 direction or "wiggles". In tbis regard, a po:ynomiat B.R.A. of 

degree n would, in general, have one less "wiggle" tban·a B.A. of degree n+.l. 

The need for "wiggle-free" approximations has been, in part, responsible for 

proscribing the application of minimax theory to automated curve fitting. The 

angle cy•::-defines an optimal curve fitting procedure with respect to the uniform 

norm and the given approximating class. AB. R.A. is rotation-independent in 

the sense tJ1at neither the approximation g➔:- ,. nor the error e ➔~(a ➔ 1·) depend on the 
Cl" 

givca 01: icntation of the function. 

The problem of characterizing CY-,:-has been extensively studied in the case 

of straight liue approximation for the discrete 2
2 

norm. 'TI1c best approximating 

line for 1Y ➔} is called the orthogonal regression line (Li11nik, 1961). Roos (] 937) 

has given a solution for a best approxi1rn1ting straight line in tl1e 2.2 norm which 

is invarian1" to rotation, translati.on, and linear stretc11ing. Michaud (J 969) has 

given conditions for O'.-:~ for straight line approximat:ioi·• in t1rn I ,
2 

norm. 

1n Chapter II ,.vc review tJ1e cxi::~tcnc<.o, uniqueness, n.nd c11aracterization 

theorems of minimax n_pproximation, cx:nn i.ne the a-rotation 0rrnr e (t) in 
(Y 

de1ail and rcbte the mini111ax theorems to 1.11c set R, of a-rot:.it.ions, t=ucll 1.l1at: 

dcmor 1suatc that ncilhe·1.• uniCJl1<:•11css nor full cl1c1n1ctcrjzation ~ff(' gcncr:.:1 
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properties of cc rotation minimax approximation. These examples also serve to 

motivate the definitions and results of the fol.lowing chapter. 

In Chapter III we redefine the a-rotation minimax approximation problem 

as the simultaneous approximation of upper and lower semicontinuous envelopes 

of a uniformly bounded map and apply the results of Dunbam (1967) to prove 

existence, conditions for uniqueness, and necessary and sufficient conditions for 

the CY.-rotation minimax approximation off. 

In Chapter IV we define the best rotated approximation problem. We then 

show lhat for every continuous function on [O, 1] or any subset thereof, possesses 

a B. R. A. for the Chebychev class of approximations. The proof is a consequence 

of our result that e·!'.·(ry) is a continuous function of (Y.. We prove that a ➔~ is not 

in general uniql!e. \Ve then apply some results due to Curtis and Powell (1 966) 

to obtain necessity conditions fo"." the best rotated approximation. 

1i Chapter V we present an algorithm for computing a( 1\ and the polynomial 

B. l , A. We then give some numerical results obtained using the algorithm and 

a pa:,:a met2r search technique. For most of the cases examined, the error of the 

B. R. A. haJ. one more equioscillating extrema than necessary, col;1ciding with 

tlH:ise instcJ.nres for which the effect of the Totation par.:1.meter on the minimax 

error was most significant. However, we give examples which demonstrate that 

t11c error function of a B. R. A. cannot, in general, be charactcri:,,:ed by n+2 

equio.scillating extrema. 

1i Chapter VI we consider best :rotated straight li1te ar1aoximation in 

detail. In Chapter VII we present extcitsions of some results due to Tornhcirn 

(19.'S0) for ch~uacterizing the error func-U<>,l al 2 B. R.A. 



CHAPTER II 

THE ERROR FUNCTION OF AN a-ROTATION OF f 

2. l THE CLASSICAL MINIMAX THEOR_EMS 

Results of the classic al minimax theory to which we will refer 

are the following (Rice, 1964): 

5 

Theorem 2. 1 (Existence): If f is a continuous real-valued func­

tion on [ 0, l] then a minimax or best appr~xi1nation g,:,E G exists. 
n 

Theorem 2. 2 (Uniqueness): The 1ninimax approximation /' of 

theorern 2. 1 is unique. 
,, . . ,, 

Theorem 2. 3 (Characterization): A function g 1s a best approxi-
,,. 

m.ation if and only if the error function, e(x) = f(x) - g··-(x), has n + 1 

equio3cillating extrema; i.e., there exist n + 1 distinct "critical points," 

0::5:x <x < 
1 2 < x n + 1 ~ 1 , such that 

e(x.) = (-l)iA, i = 1, ... ,n+ 1, where I>-- I= I ie(x) ! I. 
l 

lf e(x) satisfies the conditions of theorem 2. 3 then e(x) is said to have 

flfull chc..raclerization. 11 

2. 2 Tl-fE ERROR FUNCTION e (t) 
Cl! 

Let f(l) be a continuous real-valued function on [ 0, l]. We ·Nill 

use tE [O, l] to parametrize this func..tion after rotation. Before 

rota hon the function is defined by x= t, y= f(t). After rohition by an 

angle O' (\vhi ch we will me::i.surc pos:i.bvc clockw:i se), th:; curve is given 

by the parametric equation:..; 

X = X (t) -· tco '.·, O' + f(t) S111 O' 
G' (2. l) 

y = " /j,) -= f· C• i 
' A• 

..J.. f(t; cos (l' )' \VI ~· ,.._, ........ c... ,_ 

(V 

wJ1c1·c t ranges from. 0 to l. We wil) refer to th(~ curve (?... 1) ai, thP 



result. of an 110!- rotation'' of f. If x {l) 1s monotone, the y given by 
Cl! 

6 

(2. l) is a function of x; otherwise it is no_t; i.e. , the curve has becorr1e 

multi-valued. 

The range of abscissa values of the Q'- rotated f is the range df th(; 

continuous function x (t), which we will denote as ( a, b]. Thus if we 
Cl! 

wish 'to exploit unisolvence, the class of approximations must be 

unisolvent over the interval [a, b]. 

Now consider an approximation g(A, x) ( G to the a-rotated f. 
n 

Parametrized by t, the error 

e (t) ::: y (t) - g(A,x (t)), t E·[O, l] 
a a a 

(2. 2) 

1s a continuous function in t and periodic with period 271 in er. We note 

for future reference that le (t) I and hence 
Cl! 

I~ (t) 11 is periodic m Cl! 
Cl! 

with period 'IT for polynomial approximation. If G = L then (2. 2) 
n n 

becor:nes 

n 
e (t) = y (t) - '\' a.cp.(x (t)), t E [0, l] 

Oi Cl' LJ llQ' 

i= 1 

and if G - P 
1 

then (2. 2) is of the form 
n n-

n-1 . 
e()t) = ya_(t) - ~ a 1(xO'(t)/, t( [0, l]. 

i= 0 

2. 3 THE SET OF ROTATIONS R 

Definition 2. 4: R = {o, I the a-rutabon off 1s a func.tionJ. 

(2. 3) 

(2. 4) 

Proposition 2. 5: Let G be a unisolvent cla.ss of functions of 
n 

clcgre<:: n defined over a range ( a, b] w11ich is sufficiently large t.o include 

the range of v2.luc s of :,\. (t) for all 0' ( [ 0, 211'] . Then 0 1 E: R if and 

only if U-ic s e~ of functions G is uni::;,:l.vent in t. 
n 
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Proof: If cv ER, the n1.apping t _, x (t) 1s one to one, and x (t) is 
CV O' 

a monotone function oft. Given distinct t 1, ... , tn f [O, l], and any :::cal 

numbers y 1, .. -. , yn then xC\'(t1), ... ,xO'(tn) are distinct poini:s of [a, b] 

and hence we can solve g(A,x (t.)) = y., i = 1, ... ,n uniquely. a 1 1 

If OJ / R , the r e ex is ts t 1 , t 2 
E [ 0 , 1 J , t 1 1- t 

2 
, such that 

xa(t 1) == xc~(t 2 ); we cannot then have 

Theorem 2. 6: If O'-E R, then a-rotation minimax approximation 

exists, is unique, and is characterizE;d by n+ 1 equioscillating extrema 

in t. 

Proof: By theorerns 2. l, 2. 2, 2. 3 and proposition 2 . .5. 

2. 4 THE a,-ROTA TION OF f AS A UNIFORMLY BOUNDED MAP 

The purpose of this section is to anticipate sorne results and to 

motivate the approach taken in the following chapter on a-rotation 

minirnax a.pproximation. 

Ur1:iqueness of approxin1.ation is not a general property of 

a- rotation m.inin1ax approximation. Let f (x) be the continuous function 

of Fig. 2. land let Fig. 2. 2 be its rotation by 90°. 

y y 

iVf(x) 

i

/ \,,a
1
x+a 

/' 0 

----- -----~t __ \\ •• I I . 
I I 
l / 
I I 

V ------·--·--· -
'--.. ___ ... ; __________ .. 

~. ·--- --
Fig. 2. 1 X Fig. 2. 2 X 



If our set of approximations is the class of straight lines, then 

bytheorem2.2, a
1
x+a

0 
in Fig. 2.1 is unique. Theapproxin1alion 

8 

a 
1

1x + a 1 in Fig~ 2. 2 is clearly not unique since any straight line within 
0 

the indicated pencil of lines would minirr1ize the maximum error. 

It is not possible in general to characterize a best approximation 

of an. O'-rotation of f by equioscillating extrema of the error function 

eO'(t) as in theorem 2. 3. The following example serves to illustrate 

this point: 

yl 

I ✓.,-f(x) 

/\ 
J ,,.,.,. 

'--· ,..-------· ·----·. ·--·-- -------~---
Fig. 2. 3 

X 

Fig. 2. 3 is the given continuous function f(x) 1s to be approximated 

by z-t straight line (so that G is a unisolvcnt class of degree two). In 
n 

Fig. 2.4 £.has been rotated by an angle a- and Lhe resulting curve is best 

approximated by the straight line a 1 x+a 0 . Fig, 2. 5 is the resulting 

error function c (t) of Fig. 2. 4 gral-'hed as a func '.ion r:..1f l. 

e (l) 
O' 

O' 

Fig. 2. 5 

t 



Although e (t) has three (n + 1) extrema, they fail to oscillate. 
(1 

9 

However, if we plot the error with abscissa x instead of. t, then 

we obtain Fig. ·2. 6. 

y 

X 

We define the error e(x) by taking, in each region where the curve 

is :m.uJtivalued, the branch lying farthest from y = 0 (as shown by the 

soljd portions of the curve in Fig. 2. 6). We obtain e(x) as an, at most, 

bi-valu,~d rnap on [a, b] which has discontinuities. However we thereby 

regain the n-!--1 equioscillation property, with critical points 

a ~ xO!(t 1) < xO'(t 3 ) < xa(t
2

) ~ b as seen on Fig. 2. 6. 

The redefinHion of the error iJlustrated in Fig. 2. 6 has become 

the, crucial observation leading to the characterization and uniqueness 

theorems of the following chapter. \Ve note that the eqnios cillation 

property in x is an easily vcrifiabl c condition on ~he ex.tr em.a of e (t). 
O! 

\.Ve need only compute x (~- ), renurnucr the t. 's such that 
CY l l 

x (t. ) <x (t. ) < x (t. ) and exarni.ne the signs of e (t) a.t t. , L , l. 
o: l l O'. 12 O' 1 3 O.' 1 1 1 2 1 3 

to dctern1inc whc~hcr the error c (t. ) docs equioGcillale. 
O! li 

J 

The error funclion c(x) of tlte curv\; given 111. Fig. ?. ,). is simple 



to co1npute since the curve is at most bi-vaiued as a mapping in x. 

Hovlever this is not in general the case. Such exarrJples as sin(n 7ix) 

and xsin( 1/x) when rotated by 90° can be multivalued or infinitely 

valued at a given value of x. We have the following obvious result: 

10 

Propcsit:ion 2. 7: If f(x) is a continuous real-valued function on 

[ 0, l], then the a-rotation of f, defined as a mapping from x E [ a, b], is 

a uniforrnly bounded map. 
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CHAPTER III 

THE MINTh1AX APPROXIMATION OF AN 0:-.ROTATION OF f 

3. 1 INTRODUCTION 

In this chapter we show that the uniform approximation of an 

01-rotation of f in x can be defined in terms of the simultaneous uniform 

approximation of an upper and lower semicontinuous function. Our 

constructed approximation proble1n is exactly that considered in 

Dunham (1967). Dunham's results give a solution to the uniqueness and 

characterization of a minimax approximation of an a-rotation of f. 

However, these conditions depend on properties at the extrema of the 

constructed approximation in x. We byp9-ss this limitation by relating 

the extrema of e (t) with the extrema of the constructed semicontinuous 
Q 

approximation and proving the equality of the norm of the errors. We 

obtain, as a result, for each a-rotation of f: 1) existence of a minim.ax 

ap;noximation, 2) necessary and sufficient conditions for minimax 

approxir.nation in tenns of the signs of the error at extrema of eCt'(t), 

and 3) c0r1ditions for uniqueness of minimax approximation in terms of 

the extreroa of. e (t). 
QI 

3. 2 THr; UPPER AND LOWER ENVELOPES OF AN QI-ROTATION OF f 

In thE: construction which follows we implicitly assmne a given 

O' E [ 0,21:] We will not need to consicl,~r ,vhether the a-rotated f is n1any 

valued in x or single valued, and l:L:nc<" the fo)lowjnr, analysis is intended 

to apply to any a-rotation off, 

Let a El 0,21TJ, (a, b} be the range of x
0
,(t), t E [0, l] and 

l '- I -,_- I,. I 
l~I.,.._ 1~; -- X, 

Cl: 

i? l \ 
\ _, • .,_ I 



Tberi 

• Let 

sup y ft) 
Cl 

1 

t ET 
X 

inf sup f+(u) 
o>O!u-xl<o 

f (x) = inf y (t) 
tET QI 

X 

;; (A, x) = . f _ (x) - g(A, x) 

12 

(3. 2) 

( 3. 3) 

(3. 4) 

( 3. 5) 

f- (x) = sup inf f (u) 
o >o I u - x I < o -

By definition, f+ and f- are the uppe1· and lower envelopes of 

y (t) and hence are upper and lower semicontinuous functions of x. 
a 

Froin (3. 1) and (3. 5) it follows that 

(3. 6) 

for all x E[a, b]. 

We define the corresponding error functions off+ and f as: 

+ e,(A,x) = f (x)-g(A,x) 
T 

e_(A,x) = C(x) -g(A,x) (3. 7) 

e(A) = max l lle+(A,x) II, ile_(A,x) II J. (3. 8) 

Sjncc f+ and C are respectively upper and lower semicontinuous 

functions of x, it follows that e+(x) a?1.d e _ (x) are respectively upper 

and lower scmicontinuous functions of x for continuous approximations 

g(A, x). Since an upper sern.icontinnous function a~s1.1mcs 1t 1naxi1num 

va]ue on a closed interval, and a. lower scn~icontinuous function assu1nes 

it 1ni11i.m.urn on a clos cd interval (Royden, 1963, p. 40), then c + (x) 

assumes jts 1naxiirmrn and e (x) its minimurn. on a closed interval. 

3. 3 THE DUNHAM THEOREMS 

The app,:oxi.rnaticn prob] cm. defined by e(A) of (3. 8) is cxacf:ly that 
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of Dnnhan, (1967). Before we consider Dunhan,'s results, we n,ake the 

.following definit~ons: 

DefiniLion 3. 1: An extremun, point of the approxim.2-tion g(A, x) 

+ -is a point x
0 

E [a, b] such t:hat f (x )- g(A,x ) or f (x ) - g(A,x ) is 
0 0 0 0 

equal to ± c (A). 

Definition 3. 2: If x is an extrernum point of g(A, x) such that 
0 

- (C (x ) - g (A, x ) ) --
o 0 

then x is said to be a straddle point. 
0 

e(A) 

Definition 3. 3: Extremum points of g(A, x) which are not straddle 

points are termed alternation points. 

The results of Dunham (1967) which we will refer to are the 

following: 

-·­,,-
Theorern 3. 4(Dunham): A minjm?-x or best approximation g (x) = 

g(A,;
0

, x) ( G exists which minimizes the uniform error to f+ and £- for 
n 

an c- .- C 6 -:: -~n • 

. _';rheorem 3, 5(Dunharn): g,:,(x) is a B. A. if and only if g,:,(x) has 

a straddle point or n+ 1 alternation points oscillating in sign. 

-·-
Th _ _:::orem 3. 6(Dunham): If g··- has n+ 1 alternation points 

,,, 

oscill<'tting in sign then g·,- is uniqc,e. 

3. 4 RESULTS OF MINIMAX APPROXLl\1.ATlON OF ii.Na-ROTATION OF f 

Our goal is now to relate 0:-rotat:ion approx:i'mation ·in x, about 

which ,ve know a g0o<l deal, to approxi:.-naLion in e (l). 
O! 

The fol]owing r.esuH due to 1 j;; z and McLaughlir~ ( 1969) will be 

Uf: cful. 

Theo r rn 3. 7: c (A) =- e (A). 
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Lemma 3. 8: ~(A) = lie (t) ii. 
(\I 

We 'Nill denote I \c (t) II as e (A). 
O'. C\! 

Proof: We will assu1ne positive extrema throughout the proof. 

It is evident that sup I~ (x) I 2 e (A) since y (t) :,; f (x) for all 
+ ~ O' + 

t f T 
X 

Assume sup I;;+ (x) I > e O'. (A), and let t 1 be an extremum of e C!(t). 

Then by hypothesis, eQl(A) = yC\l(t
1

)- g(A,xa(t
1

)) and 

But y (t
1

) - g(A, x (t
1

)) 2 y (t) - g(A, x (t)) for all t f [ 0, l] 
Cl! O'. O'. O'. 

2 y (t)-g(A,x (t)) fort fT. 
C\I C\I X 

But thi.s is a contradiction. 

TI1(!0:rcm 3. 9: ----· e (A) = e(A) . 
QI 

Proof: By lemma 3. 8 and theorem 3. 7. 

Thcc,rsm J. 10: t
0 

f [ 0, l] is a point of extrema of eJt) if and only 

if x (t ) is an extJ:emum of e(A). 
CY. 0 

Proof: We will prove Lhe theorerr: only for positive extrema of 

e It) and extrema of e (x). a'. + 

Evidently, if t is a11 extremurr.t of e ( t) tlien x (t ) is an 
0 G O'. O 

ex.tr cn1u1n c,f. e + (x). 

Now, let x be an cxtrcmum of c _Jx) a11d let 
0 -, 

1' = l. t I e: ( t) = max e ( t) J . 
QI O'. 
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Vve assume there exists x such Lhat for all t E T, x (t} -/: x ; 1. c., •,.vc 
0 O! 0 

arc assuming that it is possible to create exLrcma by constructing semi­

continuous envelopes of an Q!- rota lion of £. Then 

e (t) > e (t) >- e (t) 
Q O' CY 

tET t/T tET 
X 

0 

where T == ltlx (t) == x J. 
X

O 
Q" O 

and T 

ZT == 

Sine e {I- (x ) == 
0 

inf 
& > 0 

== rnax 
t ET 

X 
0 

X 
closed by continuity of x (t), then f+(x ) < f+ (x ). 

a o o 
0 

y (t) 
()I 

Hence there exists 6 > 0 such that for x E Z == lx I !x-x I< & J , 
0 

ltlx (t) == x, xEZJ, for alitEZr.,, t/.T. 
O! i 

Othcrwis e ther c exists 

an infinite s eguence of l t. J E T such that e (t.) >- e+(x), x € Z which 
• l ~ l 

imr)Iies tbc:.t there exists a limit at x and x (t') == x 
0 O! o' e (t') >-e+(x ) 

a o 

by contint:ity cf e (t). 
O! 

Therefore eO'.(t) >- e
01

(t), which implies 

t/T tEZT 

e (t) > e (l) >- sup e (t) >- inf 
O! O! O! 

sup e (l) 
O! 

tET t,ET tc:ZT &>O tEZT 

Bat this ccmtr2,dicls the facf· that x is an ext:rcmurr~ and the max of 
0 

e (t) is equal to that of e+(x). This concludes the proof. o, 

The essential i1np)icatio11 of fl1corcn:1 3. 10 is that no extrerr1a are 

created in constructing flw upper and lowc:r. envelopes of an a-rotation 

of [ iu x. However it is posf;ihk that lhc relationship bci·wce!n cxtrerna 

in t\,(t) and C+(.x) or ('_.(:>-.) i.s 1:ic)t 01-,.c to one. The foJlnwing coro1lary 
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provides the solution to this question. 

Corollary 3. 11: i) If x is an alternation point of the approxima­
o 

ticn then there ·exists a unique t ET such that t is an extremun.1. of 
0 X 0 

0 

e (t). 
c~ 

ii) If x 1s a straddle point of the a.pproxirnation then there 
0 

exists exactly two points t 1, t
2 

E Tx , t 1 -/ t
2

, such that t 1 and t
2 

are 
0 

extrema of e (t). 
Cl'. 

Proof: Since an QI-rotated continuous function is a Jordan arc, 

given any x E [a, b], if t 1, t 2 E Tx' t 1 f:- t 2 , then ya(t 1) -I yCY.(t
2

). 

Corollary 3. 11 implies that if g(A, x) has no straddle points then 

there are the same number of extrema of e (t) as alternation points 
CY. 

of g(A, x). 

We now state existence, characterization, and uniqueness results 

for Q'--rctation minimax approxi.rnation. 

Theorem. 3. 12: (Existence): The minimax approxim.ation g 

of the c,-rotation of a continuous function, exists . 
.. ,.. ..., .. 

_,_ -,-

Theo:·em 3. 13 {Characterization): g-,- = g(A·,-, x (t)) E G is a 
--- O:' n 

rn.inirnax approximation to an a-rotation of f if and only if 

a} there exist extrema t
1

, t
2 

of e (t), t.
1 

-f t
2 

such that 
Q/_ 

EG, 
n 

b) there exists n+ 1 extrerna t.
1

, ... , t , 
1 

0£ E, (t) such that, for 
n-r O! 

some reordering t. 
l. 
J 

Proof: Dy thco rem. 3. 5 and corollary 3. 11. 

Theoi·cm 3. l·:l- (Uniqur~ncss): If g,:, has properly b) of theorc1n 
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3. ] 3 Lhcn g 
::;{ 

1s lhe unique rninin1.ax approxi1nation. 

Proof: Corollary 3. 11 and lhcorem 3. 6. 



CHAPTER IV 

BE...,T ROTATED APPROXIMATION: THEORETICAL R.ESULTS 

4. 1 DEFJNITIONS 

18 

In th ·s chapter we shall be primarily concerned with the Chebychev and 

polynomial classes of approximations o.ncl hence with the error functions (2. 3) 

and (2. 4). However, we m_ake the following definitions for the unisolvent class 

G. 
n 

Definition 4.1: Given a unisolvent class of functions G , a continuous 
11 

function f on [0, 1 J, and a given rotation ex, then e•::-(0!) is the error of the ry_-

rotation minimax approximation; i.e., 

e•::•(,y)= sup [y (t)-g(A·::-, x (t))l=[[y (t)-g(A_-lf, x (t))II 
t E [0, 1 ] a O'. cY. (Y. 

By the results of the previous chapter, g·:~ exists for each a. In this 

charite:r we \Vi.11 be concerned with optimizing O'.; i.e., with finding ry-lf for which 

Defini.tion 4. 2: A best rotated approximation (B. R. A.) is a g ~~-''-E G such -- --·---- ex" n 

that ·g·· -ii-." is a best approximation for the C\'.~:-- rotation of f such that CY. ,c 

for C( E [0, 277] 

c-;1- (od is a bounded periodic funcfion in tY. with period 2rr (period 1T for 

polynomiJ.l approximc1tion). We .sbaH now shc1.1-1 tlnt it is continuous for g EL . 
n 

4. 2 EXISTENCE OF BEST ROTATED APPPCXJMr\ TfON 

Lemrna 4. 3: 1f f(x) -:/-a 1 x + a0 , tlwn the lcr,gth of the interval [,\~• bC:'. J, 

the r<1ngc of x (L), is never zero, for all CL E [0, r:J . 
Ct 
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x (t). Let u = inf M(rv ). M((Y.) is continuo:.1s and bounded on [O,rr] and hence 
(Y O'. 

achieves its infimum. l[ u = 0, then there exists CY.' such that 

x ,(t) = tcos r/ + f(t) sin ry' = c 
ry 

Now sin fY. = 0 when CY = 0 or rr and hence when M(ry) is not zero. Thus at CY.', 

f(t) =-c/sin Cl'+ tcot o'.' 

But this case is ruled out by hypothesis. Therefore u =/:: 0. 

Theorem 4. 4: If f(x) -I a 1x + a 0 then eic(a) is a continuous real-valued 

function of Cl., where G = L . - n n 

Proof: The proof is indirect. Suppose eic (Ci) is not continuous; then there 

exists O:'.o ( [0,2'7'!};uch that e-:t·(oJ is not continuous at cv
0

. TI1en there exists (> 0 

such that in every a-neighborhood of r:1
0 

there exists CY such that le-:c(ry)- e·::-(rY
0

)! 

;?:E. 

We discuss separately the cases A a:nd B. 

wliere at denotes the kth coefficient of the Chebychev best approximation of 

degree JL for tl te er rotation of f. 
• 0:'o 

Since /!v (t)- ~ a.t1 
0

1 
(x (t)) /1

1::; !11 ,- (t) ---~ ak (f)k(x (t)) I/ 
·ry__ 1-::·( ry Jcv , (Y ' 

()lo 0 o 
~ //v (t) -- 2: ak 0

1 
(x (t)) 11--1! y (t) - I: ak (f)k(x (t)) II 

J (Y , C Cf. O' 0 ,. • OLQ 
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ao 
s: l!y (t)- y (t) !I+ I; '1 a.1 I 11(/'\k(x (t) )- <Dk(x (t)) II 

(Y (Y • J:C ,.Y, 0' ,, (V 0 ., • 0 

/)'o 

1l~a cok(x (t))lls;2\ly (t)ll 
k • CY C< 

0 0 

the cocffici.ents of~ ak O'o cok(x,_/t)) arc bounded (Rice, 1964, pp. 24-25) .. For 

sufficiently small c5 >0, since y (t) and x (t) arc continuous functions of cv., and 
• O! CY 

the (,Ok's are continuous functions, (4.1) can be ma.de less than€. TI1is is a 

contradiction. 

Case B: From case A we can immediately conclude a similar result to 

(4. l); i.e., 

e 1c(o:
0

)-e~~(<Y) s; lly (t)-y (t)ll+~lak(Y Ille (x (t))-cpk(x (t))II. (4.2) ~o a 1< ~ O!o 

Since for all OL, lly ry(t) 11 is bounded, .then there exists a constant N such 

that 

Let ¢(t a ) = ~ a ry <!J (x (t)) 
'k k·k!Y 

he a best approximation of y (t). Hence the {akO'.} satisfy (1. 3). 
Cl. 

UI1bounded, then there exists a Kand a seqnr~nce 0:
1

, ... , 
(X. 

b unbounded; i.e. , I aK JI ...... ro, j _, 00 • 

We can then choose a subsequence of rv. such that - J . 

(4. 3) 

(4. 4) 
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Finally, since Cl' E[0,2rr J, we choose a subsequence of r,j satisfying (4·. 4) 

such th8 t 0'j • rv'. 

Now consider tl1e sequence 

O'. . a . a . ,:v . 
,f, (t b ) = ~ (a J /a .1 ) ,fl (x (t) ) = e· (t a J )/a J _, 0 
':'-'j ' k k K 'r' k O'. - ' k K 

j -> co (4. 5) 

cv_, a. 
Since the mag11itudes_ of jak J /aK JI are all bounded by unity, we can extract 

a subsequence converging to bk' and since (4. 5) is a continuous function defined 

on a compact set then 

n 
<.DK(x ,(t)) + ~ bk' cpk(x ,(t)) = 0 

ex k=O a 
kfK 

(4. 6) 

Equation (4. 6) is defined on some non-zero interval by lemma 4. 3. But 

this contradicts the unisolvence of (4. 6). Hence a/Y-must be hounded for all rv. 
K 

Tt.erefore, for sufficiently small o >.O, (4. 2) can be made less than c, 

which is a. co11tradictio11. 

Pnipo~:itjon 4. 5: e ➔~ (oJ is a bounded continuous real-valued function periodic 

with period 2-;-r, provided f(x) f ax+ b, f continuous on [O, 1 J. 

Corollary 1J.. 6 (Existence): The optin1.al orientation CY ➔! and the best rotated 

apo.r:ox.imation g 1<_, c L ex;_sts for ,;ontinuous f defin.ed on [O, l], provided 
• CC'' n 

f(x) fax+ b. 

Corollary 4. 7 (Existence): lf one of the <.0k's 01 the L
11 

approxirnaling class 

is J. no1l- zero constant, then u•:'-and g •:i•,, exists for all continuous f(:x.) clcfinccl 011 
CV" 

[O, 1 J. 

Proof: l.f f(x) == ax + b, there ex Ls Ls n,•:~ such that c•::-(a.,:•) = 0 (sec corollary 

., c:) 
\.J, J . 

From coroltiry 4. 7 we cDn conc1ucic tJrnt polynomial B. R. A. exi8tR for all 



22 

fcC[O, 1 J. We note that if tl1c functions ~0k' k = 1, ... , n, are lil.!eorly indepcncknt, 

the proof of tbeorcm 4. 4 is unchanged and hence tbe results, proposition 4. 5 and 

corollaries 4. 6 a::ncl 4. 7 follow. 

Corollary 4. 8: If f is defined on ;:i finite point set or any subset [t.] of 
1 

[O, 1 J such that the cardinality of the set lx (t.)} is greater than or equal ton for a 1 

all O' dO, 21r], then e·lc(,y) is continuous on [O, 2rr]. 

Proof: 1he condition on the cardiJ1a lily of the set [ x (t.) J guarantees that 
a 1 

there will be enough points at any a, and hence at a' of the proof of theorem 4. 4, 

so that the co:1tradiction following from equation (4. 6) holds. 

CorollaI.Y---1.:.2._(Existence, discrete case): If the cardinality of the set 

l_xO'. (ti)} is greater than or equal ton for all_ Cl'.dO, ?T], then a•;t- and g~:- E L
11 

E:xists 

for f defined on any subset of [O, 1 J. 

In the computation of 01•:f and gc~\~, we will often find it desirable to replace 

the interval [O, l J by a finite point set and seek an approximaUon which is optimum 

on thai- set. 171e following result due to Cheney (1966, p. 86) relates the continu­

ous and dls~~:r.etc ('.:-rotation minimax error. We will need to establish some 

notation. Let X be the range of x (t) and Y be the subset of points x (t.) :s;X 
. (Y. O'. Cl Q'.l Ci. 

for r1-E: [O, rrJ . We define 

I Y I== max inf Ix - y l 
(Y X(X y (Y 

(Y. (Y. 

Theorem 4. 10: e·:'.· (rv) ly •➔ e;;- (o·) Ix c1s !Y ] -·• 0. Evi.d8111·ly C 4
" (CY.) ly 

a ,y a O'. 

:;;e-lc(rY-)ix . Let 01t and r{d' denote respectively Lhe oplim.:il rotation for f 
(Y. 

defi11ecl o·.rer the point set lt:iJ and LO, l J. rl.1,en e ➔'.·((Yl) ~ e-l'(IYt) ar1d c~•;;-(01J:·) 

ii O' ·:, is unicJ:1c, then 'v -le • .., CY-;,-as Slll) JY j -• 0. 
c • Ld c CY. a 

We will prove by constn1cling ;:in e);nmplc tirnt (Y;' need not be unique for 
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continuous .functions defined on [0, .l] for tl1c P
O 

class of approximations. We 

will need a result from Chapter VI which says that a best rotated constant approxi­

mation must have three equioscil.lating extrema or a straddle poi11t. Dy examining 

Fig. 2. 1, we sec that there exist essentially three candidates for B. R. A., those 

given in Fig. ~- 1 and 2. 2, and in Fig. 4. 1 below. 

y 

X 

Fig. 4.1 

Prom purely geometric considerations, the approximation of Fig. 4. l has 

smaller minimax error than Fig. 2. 2. If we set h = -r;,3. the resulting minimc:.;x 

errors at~ = 0 or Fig. 2. 1 and CL of Fig. 4. 1 are equal. Hence a'} is non-unique. 

We car:i. also conclude that if h < 1J then a•:c = 0 E'R, and if h > ./J then 

ry''· r/ R. 

4. 4 CHARACTERIZATION OF BEST ROTATED APPROXli\1ATION 

4. LL 1 111c e-oal of this section is to apply some results in the theory of non-linear 

mi11imax ~ipproximation due to Curtis and Po'.vell O 966) to characterizing Chcbychev 

and polynomial best rotated approximatio.11s where we assume f E' c1[0, 1 J. For 

the Ln clD.ss of approximations we will need to assume_ that the cpk's have continu-­

ous first deriYatives on ~1,b]. r(t,;\'c) = s.(t,A.
1

-::-, ... , 'A~~) is a minimax 
n+l 

approximat.ion to f(t) if the pararncters :\. ➔c are such tlw.t 
l 

max l[(t) -- 1J-· (t, 
t d0, 1] , 

is mi11imizecl. 

(4. 7) 
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The minimax app.roxiniation of e (l) is not in the form (4. 7) of the Curtis 
(Y 

and Powell (C- P) problem. However, e (t) can easily be rewritten to fit tl,e C- P 
(Y 

paradigm. 

eO'.(t) = f(t)- cj~(t, t-) = f(t)- (f(t) ·- y O'(t) + ~ak cok(x(Y.(t)) 

t dO, 1 J 

where the C- P approximating function is 

and the C- P parameters are 

(4. 8) 

(4. 9) 

Propusition 4. J 1: Let c:-(t, "A) be the approximating function (4. 9). Let 

<J_, (t, ;\•:,) be the minimax approximation defined by (4. 7). Then a C-P rni.nimax 

approximation is a best rotated approximation where A. -l:-= a. -lt· and A •:t+l = O'-:,. 
1 1 n 

Proof: We denote the minimax error of (4. 7) as E(;\·::-). 

Given i\.~~ 1 = (Y. , if t-/ I-a{ then E (;\ -i:-) is not minimax. If A~~ 1 ;L c-/~then by 

defiJ1itioJl 4. 2, E(;\'c) is not minimax. 

Definition 4. 12: Let r equal the number of extrema of e '\c (t) where 
--- (Y" 

q~ (t, ;\-:',) = q'-(t, at, a:t, ... , a
1
t ,·O'.-l~). We define a·n r x n+J. m::i.trix whose elements 

are given by 

(4. 10) 

Jf 11,, is the B. R. A. error then a. is d .. fi.11-2cl as the sign of the error c'\c(t) 
) O'." 

at the extren1ct t. 
1 
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i = 1, ... , r. 

Jn the evef!_.t that r = n + 2, there arc n + 2 square matrices of order n + 1, 

denoted by li 1, ... , ,0,r' where 6.k is the matrix obtained by deleting the kt11 row 

of the matrix D. pk is reserved for the determinant oJ ,0,k multiplied by (- 1f 
Theorem 4.13 (Curtis and Powell): At r..•::-the rank of Dis less than r. 

Theorem 4.14 (Curtis and ?mvell): At ;\,-le, if r = n + 2, the signs of s 1, ... , 

s are all the same as or all opposite to the signs of p1, ... , p . r r 

An examination of the proof of the Curtis and Powell theorems reveals that 

the C-P conditions are necessary at a relative minimum and hence must be satis­

fied at every relative minimum. For our purposes, the C-P t11eorems are tests, 

on the bas is of which consideration can be narrowed to those approximations which 

sati.sfy the conditi.ons. 

By (LL 10) the C-P matrix is: 

.D 

Since the crucial property of t:he C-P matrix: with respect to the Curtis and 

Powell theorems is its rank, tben D can !,e sirri~Jli£ied to 

r/x~(tl)) ... 

D =\ . 
\ . 
\ ~o , (x ( t .) ) ... 

J. ('-!.. l 
c[1 (x (t ) ) 

n o· r 

v (t 1) (~ak <Dk1 (x (t 1) )\ 
11:. , '·'-• ,, , , ,..,_ \ 

)' <V.(trH~ak "'k (x,/tr)) I 
(4. 11) 
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At i\_-:c, e -:i-,,(t) has characterization according to theorem 3. 13 a.nd hence 
0: >, 

e J\~ (t) has either a straddle point extrema or at least n + 1 extrema in t(r >-n + 1). 

4. '1. 2 CASE: BEST ROTATED APPROXIMATION HAS A STRADDLE POINT 
EXTREMA 

Theorem 4. 15: If there exists one straddle point and r = n + l extrema, 

then a nece"sary condition for L B. R. A. is that the derivative of the approxima­n 

tion in x is zero at the straddle point. 
CY 

Proof: By theorem 4. 13, the rank of D must be less than n + 1. We assume 

which j_mpli-2.s 

\ 
l 
.! 

j 
I 

y (t +l) (l:ak ({)k' (x (t +l)) ! a n , CY n _· 

(4. J 2) 

<P (x (t
3

)) 4. 13) 
n CY. 

<O 1 (x (t --f 1) ) . . . <D (x (t 1) • _ CY n - • n 0: n+ 

The third factor is non-zero 8ince the sc,t of functions [<!.\] satisfies the 

Haar condition (Rice, 1964, p. 9J ). The first factor i never zero by ttc fact 

tk1t the O'.-rotation of a continuous function is a Jordan arc. Hence tJ1c-:: sc-:011d 

tP-rm rnust be zero at a best rotated approximation. TI1is is tlic clcrivatiV<'! of the 

approximatioll evaluated at the straddle point. 
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1£ we apply th 'Orem 4. 15 to strn ight line approximation, we conclude that 

tJ1e slope at a B. R. A. must be zero. In chapter VI we will verify this result. 

'171eorern 4. 16: If tJ1ere exists r = n + 1 extrema then a necessary condition 

for L B. R. A. is t11e existence of two or more straddle points. n . 

Proof: If there exists one straddle µoint, then (4. 13) is valid. If there 

exists an additional straddle point, then the third factor of (4. 13) must necessarily 

·' be zero. 

4. 4 . .3 CASE: BEST ROTATED APPROXIMATION HAS NO STRADDLE POINT 
EXTREMA 

In this section we will be concerned with polynomial approximation. The 

C-PmatrixforG =P 1 is: n n-

1 X (t]) ... 
fY . 

n-1 n-l 1~-1 
x (t

1
) y ,(t

1
) (~ kak x" (t

1
)) 

(Y.. o. k==O ry_ 

D = 

1 X (t ) . , . 
O'. r 

By theorem 3. 13 there exist t 1, ... , tn+l E: [O, 1 J such that 

X (tl)< ... <x (t___._l) and 
Cf_ Cf_ )lT 

i n-1. k 
±(-E) =y (t.)- I: akx (t_.) , i==l, ... ,n+l 

a i k=O CL. i 

111en we can solve for E:, ak by the linear f~ystcm 

l 
wl 

X (tl) 1\ / E y (t l) \ :x (t ) 
CY. l Q' 

11 

fY. 

-1 n-1 
X (Y. (t2 ) I' y (t2) X (t 2) a n-1 I O' I <X. 

f -

I l I a 
I i n-2 

\ I l I \ : / I \ 
\, •. )11 n-1 \ / I 

~(-.l X (t --t l) ... \/tn+l) )' \ a 
\

yfY(tn+l)J CY. n - 0 I \ . I 

(4. 14) 

(4. 14) 

('1-. 15) 
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For polynorn ial approxirnaLion, the n1atrL-x D can be i11terpretcd as a divided 

difference. 

We denote rx x ... x ; f] the nth divided difference of a continuous function - o n 

f(x) on [O, 1 J (Davis (1963) and Milne (1949)) where 

2 n 1 X X X 

1 X X 
2 

1 X 

1 X 

1 X 

0 0 

n 

n 

2 x· 
n 

2 
X 

2 
X 

n 

n 
X 

0 

n 
X 

n 

n 
X 

n 

n 
X 

n 

f(X) I 

f(x > I 
0 

f(x ) 
' n 

n+l 
X 

n+l 
X n 

(4. 16) 

Wben x f. x , ... x , the denominator of (4. 16) is a non-zero Vandermonde 
o n 

determinant. 

If pn (x) is the interpolating nth degree polynomial to the values of f(x) at xk, 

f(xk)::: p
11

(xk), k == 0, ... ,n, and f E:C(n+l) [O, l], then from i11terpolation theory, 

f(x) == f\/x) + R(x) TI (x-xi) where 

. - . . - f(n+l\s) 
R (x) - [x x ... x , f] - ( + 1) , o n n . 

s €(0, 1) 

n-1 
Consider the function k (t) = y (t) ( ~ kak xk-\t)) 

CY. Cl. k==O Cl.. 

When c~ E' R, k E Cn+l [O, 1], provided f E' C11+\o, l l. 
CY. -

Fro.11 (4. 16) and (4. 17) we define the~ divided difference of k (t) as 
a 

li: t ... t ; k J from which we conclude L:1[1 t tltc dete:rm iJ1ant of D is equo.l to 
o n Cl!. 

(4. 17) 

(4.18) 

V(t) k (n+l\,) 
IDl=---(

11
/i):·--, SE:(0,1), (4.18) 

\vhcre V(L) is a non-zc1·0 Vandc:i.:monde determinant and 
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d(n+l)k 
k (n+l)(s) = rv I 

<Y d. (n+l) 
X 

Ci. s 

rn1eorern 4.17: IffEC(n)[O,l], (Y.1;ER, andk(nl(t)>O, tE(O,l), thene-l'.·v_(t) 
---··- a " (<) cl' 

must ha re nt least n + 2 extrema. 

Proof: From the condition that ry, ➔; ER, n + ·1 equioscillating extrema are 

necessary. But by the condition on kt/, if there exists only n + l extrema, the 

rank of the matrix D is n + 1 and therefore the approxirriation cannot be a B. R. A. 

by tl1eorem 4. 13. 

Theorem 4. 18: If f E C(n)[O, l J, ct~ ER, k (~~ (t) >, 0 fort E (0, 1), and e ➔\s(t) 
0:,. (<) O' • 

has exactly n + 2 extrema, then the extrema must equioscillate. 

Proof: TI1e n + 2 extrema must satisfy the conditions of theorem 4. 14. But 

by the condition on kt:! all the ,0.k determinants are positive (or negative) which 

implies tlrnt the extrema must oscillate in sign.· 

4. 4. 3. 1 P 
2 

APPROXIMATION 

_P.r~:,position 4.19: If the quadratic B. R.A. has no straddle points and if 

/
2

\-<:) > 0, x E (0, 1), tJ1en a2 f 0. 
(<) 
Proof: By (4.15) we can solve for a 2 ; i.e., 

1 y (t ) X (t.) l 
(Y.. 1 (Y. l 

a.i:-= -1 
I 6. (4.19) 

1 

-1 y (t ) X (t
4

) l 
(Y_ 4 (V_ 

The denominator of (4. 19), 6., is not zero provided straddle point extrema 

do no~ exist:. Using (2. l) the numerator of (4. 19) can be reduced to 
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l t l f (t
1

) l 

-1 t f (t ) l 
2 2 

(4. 20) 
+J t3 f(t3) l 

-1 t4 f(t4) l 

Let k(t) = c 1 + c2t + c
3
f(t) for real ci and t E [0, l J. k(t) can have at most 

two zeros for all t E[0, l J; for, if not, lr'(t) can have two or more zeros, t E (0, 1), 

which implies h"(t) can have one or more zeros t E (0, i). But this is impossible. 

Hence the last three columns of (4. 20) are linearly independent. rfoe first column 

is independent of the last three columns since k(t) can change sign at most t-wo 

times, t E [O, l J. 

Proposition 4. 20: If the quadratic B. R.A. has a
2
; = 0 and E{:-1- 0, then 

a{= 0. 

Proof: We can write the determinant of the matrix (4. 14) as 

\:1::<t1> 
2 

y O'.(tl) l X (tl) 
2 

V (t
1

)x (t
1

) X (tl) XOi (tl) ex. (Y. - fY. CY. 

1D1:-:: P. -:i ··-1 +2a * 2 

l XO'. (t 4) 
2 

Y c/t4), 1 \/t4) 
2 

y ex. (t 4)x a (t 4) ! \/t4) X (t
4

) 
I ex. 

wliicll, by our assumptions and (4. 15), reduces to 

By hypothesis, E {~ and 6. f O. Hence, at a B. R. A., a{"= 0. 

4. 5 SOME LIMITING PROPERTIES OF CY.% 

It may occur that, for a given degree Chebychev or polynomial approxima­

tion, a P,, R. A. is usdcss or uninteresting aH in the case of Fig. 4. l. J-lowcvcr, 

we can consider i-his result to be due to Lhc fact that our c1ass of approximations 

was not of sufficiently liir,h dc2;ree and clid not ~ufficicntly res -rnlJlc the given 
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funct·ion. Some justification for thi.s feeling can be derived from the following 

argument. 

-
We will require the concept of a fundamental Chebychev set. 

Definitjgn 4. 21: TlJe set [c0k} of the Chebychev approximating class L
11 

is 

said to form a fundamental Chcbychev set if each element of C [O, l J can be 

arbitrarily well approximated by linear combinations of elements of the set l(i\} 

(Cheney, 1966, p. 87) . 

Theorem 4. 22: If tl1e set of functions [cpk} of tlie Chebychev approximating 

class L forms a fundamental Chebychev set, tl1en cv.-i, ( R, for n sufficiently large. 11 • 

Proof: Let us fix_ tlie degree of tlie Chebychev class Ln. If the B. R. A. has 

a straddle point, then for that rotation of the function, any approximation of higher 

degree will not be any better approximation. But since a fundamental C:hchychev 

set can uniformly approximate any continuous function, then if tl1e degree is 

sufficiently large, CY.. -i~ ( R. 
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CHAPTER V 

BEST ROTATED APPROXIMATION: COMPUTATION 

5.1 ALGORITHM FOR COMPUTING B.R.A. 

In this chapter we shall be concen,.ed with polynomial approxima­

tion an.cl hence with the error function (2. 4) which has n linear and one 

non-linear parameter. The technique we de·s cribe for computing O' ,:, 

and the B. R. A. is an iterated linear programming approach due to Esch 

and Eastman (1968) which has the advantage of not'depending on charac­

terization properties of equioscillating extrema for minimax approxima­

tion. 

We wish lo minimize h subj cc t to the constraints 

lh I~ ie(t., A) I 
J 

which can be rewritten 

h - e(t., A) ~ 0 
J 

h+e(t.,\)~O 
J 

and 1s cr1uivalent to 

j = l, ... ,N 

J = l, ... ,N 

n-1 
h -· y (t. ', + \' a x k(t ) ~ 0 

a' J' LJ k a j 
k= 0 

n-1 
h + y (t.) - /, 

O! J ,'_} 
k=O 

akx k(t.) ~ 0 
Q' J 

J= l, ... ,N. ( 5. 1) 

Equation (5. 1) is not in linear program:rning form since the 

pararrlctcr o'. enters non-Ji-nearly. Ctu goa] is to line:-ujze (5. 1) in 0'. 

so that we rr1ay use linear progra:inning rn .. ethods :for its solntion. 

Let n, ~: O! + {Jq,. Then 
V: 0 •· 
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v (t) -- -x (t) sin 6 Cl' + y (t) cos 6 O! 
• O:' O'o ao 

- -oa,x (t) + y (t) 
O! Cl' 

0 0 

x (t) = x (t) cos 6 Cl' + y (t) sin 6 a 
Cl' Cl'o • ao 

( 5. 2) 

= X (t) + 6 ay (t) 
ao C\'o 

. I 
xn- l(t) (x (t) cos 6 Cl' + y 

·n- 1 = (t) sino a) 
CY C\'o • CYo 

xn- 1 (t) xn-l(t) n-2 
( t). - + 6 Cl' (n- l)x ~(t)y 

Cl' Cl' 0 CYo CYo 

Using (5. 2) the system (5. 1) can be linearized in the follo~ing 

way where for convenience we shall write only the second tel'm in (5. 1): 

3 2 
_ - a 3 x ,.,, ( tJ. ) - 3 a 

3 
6 a x ( t . ) y ( t . ) j = 1 , . . . , N ( 5 . 3 ) 

"'o C\'o J C\'o J 

n-1 n-2 
- ... - a 1x (t.) - (n-l)a 1oax,..,, (tJ.)y (t.) ~ 0. 

n- C\'o J n- u.o CYo J 

FinaJly, we rewrite ( 5. 3) as 

2 
-A - A

1
x (t.) -A

2
x (t.) - B

2
x (t.)y (t.) 

o Cl' J Cl' J Ct' J C\'o J 
0 0 0 

3 2 
-A

3
x, (t.)-B

3
x_ (t.)y (t.)- ... j= l, ... ,N 

0:0 J O· o J 010 J 

n-1 n-2 
-An-lxa (tJ.)- Bn-lxu'. '(tJ.)yO! (ti);;,: 0. (5. 4) 

0 0 0 ' 

On a !(ivcn iteration, ,vc start with a guess and obtain as a 

which giv..,s the best 2.ppl'oximation of (5. 4) over the discrete point sel 
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and replace CY 
O 

by the hopefully better estimate a
0 

+ 6 a. ln order to 

li1nit. 6 a so as to prevent the process fro1n n1.oving too far frorn the 

reg:i.0n in v;hich the linearizat.ion 1s accurate., constraints of the fonn 

(5. 5) 

are incorporated into the progran.1.. The iterative process 1s halted when 

o a becon,es less than some preassigned tolerance. 

5. 2 COMPUTATIONAL EXPERIENCE 

At a solution, A.,;a_ 
1 1 

'Nhei-1 a' is given, e':'(a) is easily co1nputed by standa1·d linear 

prog1 arn~ning techniques. Since the parameter space of a in the 

o:--rota.Uon error e (t) is [ 0, 77], a parameter search in a for the B. R. A. 
(Y_ 

is feasible, Vlit.h only a few exceptions (functions in Table 5.?, not 

appearing in Table 5. 1), the results of the following section were com­

puted in this manner. Although a para1neter search provides the only 

real assurance Lhat a B. R. A. has been found, it is something less than 

a practical solution. The algorithrn of s:~ction 5. 1 was implemented in 

the ca.se of q11adratic approxirnaf;ion. The linec-1:rization tolerance was 

bet at. l, fr.c iterative toler::i.nce at 10·· 5 , a was taken a.t 0, and 
0 

AZ(olcl) at 1 for lhc inilial iLe1·aLion. The; algorithrn. proved to be: very 

efficient· and ?r.ccurate requiring 110 1norc tL;:i_n thirteen ileralions, if it 
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converged at all. Norm.ally, for the last three iterations, the linear 

co1"1;strai.nt ,vas inactive. However, the algorithrn did not _converge for 

th 
-x 2 2 -x 

e , x e . 2 -x 2 
{unctions: x e For all three cases the B. R. A. has 

four critical points at Cl! 
,:, 

For all. other cases, the B. R. A. had five 

critical points at a 
... . ,. 

It 1S 
2 -x 2 -x 2 

also true that for the functions x e , e 

2 -x 
X e e,:,(a) has a very flat slope for a large neighborhood of Cl!,:, (c. f. 

Fig. 5. 1). At pre sent the question is open whether. the non- convergence 

of the algorithm is due to roundoff error or to theoretical reasons 

associated with the fact that the B. R. A. has only the neces sa.ry num.ber 
.,, 

of critical points at a··-. A similar phenomenon was observed for the 

f 
. 2x 

.unction e For the function e 2x, e,:,(a) has two relative mins, one 

at c;1 == . 082, with five critical points and another at a = 1. 13 with four 

critical points. Regardless of the starting value y
0 

or the linearization 
_,_ 
-,-

t:0Jera-:-1c0s, the algorithm converged to O! = . 082. 

5. 3 COMPUTED RESULTS 

In this section we discuss some of the numerical results we have 

obtained for second and third degree polynomial approximation, using 

the algo:rithrn of section 5. 1 and a paran1eter search progran1, for 
_,_ 

compuU.!lg the optimal orientation a···. These results are sum.marized 

in Tables 5. 1 - 5. 2. For all functions hs'.:ecl, x E [ 0, l], the discrefrL.ed 

point set: con sis ts of 101 points evenly dis tribuLcd over the interval. In 

Table 5. 1, for each function, the first entry under .1ninirn2.x error, for 

quadratic and cubic approxirnahon, is the rr1ini1nax e1 ror for a= 0. The 

second row gives tbe n.1.inimax error a1: a. rclativ, rriin, the angle at 

the error ft:.!1ction at the relati vc rnin. Often two relative rnins were 
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found. In these cases, the minirnax error, the angle, and the nurr1bcr of 

critical points are again ta,bulated. In Table 5. 2, we compare the 

unrctated minimax quadratic error with the best rotated quadratic 

minirnax error and the unrotated minimax cubic error. The mini1nax 

errors of. the third and fourth column both have the sam.e number of 
.,. 

effective para1neters. In Fig. 5. 1, the minimax error e··-(a) is graphed 
2 

for the function x 2 e -x , a E [ -1T /2, 1T /2], for quadratic approximation . 

* 2x Figures 5. 2 - 5. 5 are graphs of e (a) for the function e . Fig. 5. 2 

is for a€. [-1T /2 1T /2], quadratic approximation; Fig. 5. 3 for a C:: [ 0, rr/2], 

quadratic approximation; Fig. 5. 4 for a C:: [-rr/2, 1T/2], cubic approxim,t­

tion; and Fig. 5. 5 for a E [ 0, rr/2], cubic approximation. Fig. 5. 6 is a 

plot of the function c 2x and its minirnax approxim.ation together with the 

rotation of e 2x by a,:, and its approximation by the B. R. A. 

5. 4 DISCGSSION 

F'rorn Thble 5. 2 it is evident that the minimax error at a B. R. A. 

may or rnay not be smaJler than the error at a cubic minirDax approxima­

tion. Two extreme examples of functions exhibiting this behavior are 

the following: 
3 

If f(x) = x , the quadratic B. R.A. is much worse tha.n the 

cubic c1.ppi:oximation. If f(x) = ✓x, the cubic approximation, or any 

polynomial approxirn.ation, is rn.uch worse than the quadi·alic B. R. A. 

However we note that a second degree B. R. A. which has cornparab)e 

erro:r to a cubic approximation is a better curve fit since it has fewer 

wiggles. For tbe exa1nples give:..1, Lhe B. R. A. ofte11 has significantly 

smaller ~rror than the unrotated miniinax approxirnation of same degree, 
,,. 

H ,1.lsu scei.ut; ::,jgn.i.Dc,LllL Ll1cLL CY.,. is uii..en 81nall su t:i.121.t even a slight 

change :in the o:dentation of the c1;:;.ta wi.Lb respect to rotation can 
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dran.1.alically effect the curve fit. We note that the ratio of quadratic 

B. R. A_. error to second degree mini1nax approximation is a factor of 

twenty for the function e 2x and a factor of fifty-eight for the function 

x2, 
e Typical improvement seern.s to be in the order of factors of five 

to ten. Fig. 5. 6 dernonstrates the effect of a twenty tiines better curve 

fit to the fi..rnction e 2x. In this case, the B. R. A. is essentially 

indistinguishable from the curve . 

An examination of the data in Table 5. 1 reveals that for most of 

the cases examined, the B. R. A. error had n+Z equioscillating extrema, 

rather than the necessary n+l. In earlier stages of this study, it was 

anticipated that 

way, a B. R. A. 

n+Z equioscillating extrema characterized, in s'orne 
2 

~h 1 2 -x l e examp e x e , However, this is not the case. 

quadratic 2.pproximation, demonstrates that n+2 equioscillating extre1na 

is not necessary at a B. R. A. Th f t
. 2x 

e unc ·1on e , cubic approximation, 

dern.on~,t-1·ates that the condition is not sufficient. 
. Zx 

The func t1on e , 

quadra.tic approxirnati.on, had a relative min with n+l equioscillating 

extr~rna., demo1Jslrc.1.ting that even for convex functions, n+2 equioscilla-

2 -x 2 
ting extrerna is not necessary at a relative rr1in. For the function x e , 

cubic approximation, n+2 cquioscillating extrema were observed at 

-·-
0' = 1. 306. At this point, e··-(a) was not at a relative min. Hence n+2 

equioscillating extrema is not locally sufficient. 

The function Jx,x ( [ 0, l), has been useful as a counter-exarnple 
,:,. 

to n12.ny conjectures concerning the ch2.racterization of a···. It rnay be 

conjectured that the ande of rotation for which the range of the derivati e 
_,_ 

in absol·ute; \--aluc is u 1-1-Jil1.i.1-x1ui-11. sJ.J.uuld be ry_ .. , ... l-Io;,v-c-v-cr, t1Lis is T10t true 

for ,/x. It may also be conjcc'..ured that the ang)c for ,vhich il1.c rnoduln!3 
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_,_ 

of continuity is least should be O'-.-. This is also contra 1.lictcd by the ,I;:.. 

function. 

5. 5 CONVEX FUNCTIONS OF nth DEGREE 

It i easy to see that if :f"(x) > 0, x E:(0, 1), then the B.A. straight 

line must have critical points at the end of tpe interval. A general 

result of this type is also true; i.e., if f(n)(x) > 0, x E: (0, 1), then the 

. , B. A. polynon'-ial of degree n-1 has critical points at the end of the 

interval. It is also true that if f(n)(x) > 0, x E: (0, 1), then there must 

exist exactly nt 1 critical points at a B. A. Let us denote the nth 

de:dvative of an a-rotation 0£ f at t in the x, y coordinate systern as 
. 

in)(t). From the above discussion it follows 
O' 

that if a B. R. A. has nt2 

-·- (n) 
critical points when c/- E: R, then f ,:, (x) :} 0, 

O' • xE:(0,1). 

The first four derivatives of an a-rotated curve are as follows: 

f I ( t) ::: YI ( t) /x I ( t) 
a a 

f 11 (t) 
a 

Ci 

::: f II ( t) 

(xi (t)) 2 
O' 

::: 
-sino, + f 1(t)cos O! 

X 1 (t) 
O' 

. 2 
£ 111(t)cos Cl'+ (f"'(t)f 1(t) - 2(f 11(t)) )sinc1 

3 (XI ( t)) 
O' 

Th(' denominator x' (t) is alwavs positive or negative fo:::- 0: 
(V 

( 5. 6) 

belonging Lo th0- intf'rior of R. The: nnmerator of f( 3 \t), for i(x) -- x 3 
. (11 

is: 6 cos o, - 54x 2 sinCt, wbich clearly changes sign for arF•roprial.1'. ,:v, 

XE: (0, 1 ). 
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In a sense, the fact that the nth derivative of a function is a 

coustanl sign inhibits its 11approximability 11 by limiting the nurn.ber of 

extr"ma of the error function and hence the nmnber of tirn.es the 

approxirnation can wind around the function. By introdudng the rotation 

para1neter CY. and searching for a B. R. A. we are, in effect, attempting 

to remove the limitation on the number of possible extrema of the 

error function . 
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TABLE 5. 1 

Function Quadratic approximation Cubic approximation 
XE"[ 0, 1] minirnax _,_ 1f c. p. rninimax 

;:: # C p . . .,. 
error (Y error '.Y 

4 ,'063 45 . 007 81 X 

.01111 . 4130 5 . 00169 . 0647 6 

. 00648 .8679 6 
3 .03123 0 X 

. 0053 ·; .2782 5 

sin2x . 02192 .. 00418 

.00823 1279 5 . 00533 - . 268 6 

. 00032 1 .088 6 
X 

.000875 . 000543 e 

. 0002 50 .2864 5 . 0000146 . 0817 6 

. 00002 51 . 62 6 
2x 

. 12237 . 0l.501 e 

.00645 . 0818 5 . 000871 . 0229 6 

. 03441 1. 13 4 . 00138 . 1957 6 
-x 

.00818 . 000706 xe 

.000659 .6144 5 .0000414 .08 6 

. 000187 .970 6 
·2 -x2 

. 02607 . 00201 X e 

. 02405 . 40 4 . 00109 3 ✓-l • :I: 5 --------
2 -x 

. 01128 . 00170 X e 

.01092 .25 4 ·. 000974 -.588 6 
-x!. 

• . 017 87 . 000658 e 

. 01753 -.216 4 .000377 -.044 6 
-x~ 

. 00617 . 00452 xe 

. 00481 - . 07 50 5 . 0008('2 . 4--18 6 

. 002 85 - . 433 6 
---------·. ~-----------
cx;{x+l) . 00123 . 000 545 

. 0005·16 - . 1484 5 .000537 -.07t "-__, 
---··----

e X /(x t 1) . 01280 .-00664 

. 00584 . 08'7 3 5 . 00584 .09 5 
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TABLE 5,2 
.,. 

Function Quadratic Quadralic Cubic 
,., .. 

O! 

X(l0,1] minimax error B. R. A. error r:r1inL1.1.ax error 

3 
.03125 . 00538 .o .2782 X 

x4 . 06345 .01114 . 00781 . 4130 
5 . 092 16 . O 164 7 . 0197 l . 4922 X 

x6 .11704 . 02 12 1 .03326 . .5438 
X 

.000875 . 000250 . 000543 .2864 e 
2x 

.12237 . 00645 . 0 l SO l . 0818 e 
3x 

. 74832 . 05547 . 134-94 . 0288 e 

e4x 3.32688 . 30375 . 77 822 . 0 l 08 
-x 

. 00322 . 000111 ·.000193 - . 6, 57 e 
-2x 

. 01656 . 00 l 02 . 00203 - . 5445 e 
-3x 

. 03726 . 0031_9 .00672 - . 5246 e 
2 X 

.05894 . 00151 .01268 .2223 e 
-x 

.00818 . 00065 9 ,000706 .6144 xe 
2 -x2 

.02607 . 02405 ,00201 . 40 X e 
2 -x 

. 01128 . 01092 .00170 .25 X e 
') -x.:.. 

. 01787 . 01753 . 000658 -.216 E: ----· -·--•~- ... 

sin(x . 02192 . 00823 . 00418 -. 1279 

_e:£(xiJJ . 00] 23 . 000546 .000545 - . 1484 

.00664 . 0873 e /(.;,.;+l) .01280 .00584 
-x2 

. 00617 . 00481 . 00452 - . 07 50 xe 
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CIIAPTEH. VI 

BEST ROTATED STRAIGHT LINE APPROXIMA. TJCT~ S 

t'.i. 1 NECESSARY CONDITIONS .FOR BEST ROTATED STRAIGHT LINE 
APPROXIMATIONS 

The principal sin1plification which results from considering 

straight iine approximations is that the 0 1 -rotation of a straight line 1s a 

straight line. Hence a best approximating straight line for an CY-rotation 

of f is an admissible approximation of an a'- rotation of £. The following 

equations relate the slope and intercept of an ()'-rotated straight line 

ex+ d to the slope and intercept of the same straight line without rotation: 

C = (acOSCY - sinO') /(asinO' + COSO') 

d = b/(asinO' + COSQ') 

( 6. 1) 
a - {sjnO' + c cosO')/(cosa, - c sina) 

b = d/(cosQJ - c sinO') 

Hence we can describe the a-rotation of any straight line with the 

p::i.1·,:1-rn•:te.l."s a, b and Cl'. 

Dc.!fini tion 6. l: F{a, b, O') 1s the uniform error of approximabon 01 

an u-rotat~on of the straight line ax+b for an a-rotation of f. F(a,:', b,:,, ,i) 
.. ,.. ...,.. .., .. 

is the rn.ir.dn:12.x error for an a-rotation of f and F(a···, b-,·,c.,-,·) is the error 

of the befit rot;:,1.tcd approxin,a t-ion. 
.. ,. ..,,. _,_. 

F(a···, b ·, c/'') = 

B.R .. A. 

.. ,. ..,. 
F( tan o/, b.,. -·· ,••'1• 

'0. I' J.. C. ' C -- 0 at a 

Proof: If I.he slope of the best a;:..-1.,1·~>~,._im~1.b.21g line is not zero, 

thr.!n by rigidly rotatii.1g [ and the apprc:-xi.r:nat:i.ng line ;:.; n angle 0,' sc that 

the slope oi Lhc si.l·a;ghL line is now zero, the errol' o{ ap1:Hoxin1.ation at 

th~ .straight J.ine in C!le original ey-ro~Zttion.. Hence th.:: error of 



.. ,.. ..,,. 

approxi1nation at a' is less than at 0/.. If c,:, =-0, a··-= tan O!·,-. 

O' t­o 

Coroliary 6. 3: If straight line B.A .. 1s non-unique at 0 1

0
, then 

O' • 

49 

Proof: If B. A. at a
0 

is non-unique, then there exists a straddle 

-·· 
point extrem.un.'1 and hence a B.A. such that c··- f- 0. 

Definition 6. 4: G(k, f3) is the uniform error of a constant approxima­

tion for a ,B-rotation off. G(k ,:,, f/') $; G(k, {3) for all k, {3. 

Corollary 6. 5: F(a':', b,:,,a,:,) = G(k,:,, {3,:,), and c/' = f/', k,:, - d,:,_ 

Theore:rr, 6. 6: A necessary condition that a constant approxima­

tion be a B. R. A. is that the error function e (t) has three extrema 
• O' 

with characterization according to theorem 3. 13 or a straddle poi-:-it in 

X (t). 
Q' 

Theorern 6. 7: A necessary condition for a best rotated straight 

line app1·oximation is that the straight line is a B. A. a.nd that a 
:.:~ .. , .. = tan CY·,-. 

.Ari application of theorem 6. 2 _is the following: Let f(x) = xn, (Fig. 6. 1) 

-·· 
x c [ O_. lJ, n 2 2. Under the assumption that a··-ER, the best approxima-

ting straight line niusi. be a constant with three alternation points. 

Therefore it follows that the orientation of y ,:,(t) is Fig. 6. 2. 
CY 

y y 

~:~---~--·--__ ---- . -~v./ :·· - -··--- --x 
~ ........... .......,_,,"'- .... --··-~ .. •.?~, d 

Fig.6.1 Fig. 6. 2 

... i .. 

T~_1u s for all n, J, c} = ··E:, and from (6. l) b - -,/2 E:. 

Herc c de· ends on. n, and E: ,/2/4 as n -• 00
• 



50 

6. 2 RO AT.ION INVARIANCE OF BEST APPROXIMATING STRAIGHT 
LINES 

For straight line approxirnation we can ask whether the:re exists 

any relation bet\veen best approximations for different rotations of f. 

Definition 6. 8: Let a':'x + b,:, be a B.A. for a fixed :rotation of £. 

If for some range T of 01, 

... ,.. .., ... 

F(a'•-, b-,-,0'), Cl' ET 

..... .., .. 
is the error of best approximation, then we say that a'''x + b-,- 1s 

rotation invariant for a ( T. 

Theorem 6. 9: If f is continuous on [ 0, l], G
2 

= P
1

, then the 
.. ,.. ..•~ 

B. A. to f_. a'''x + b-,-, is rotation invariant for a ( R. 

Proof: For straight line approximation,_ the error function is 

e (t) = y (t) - ex (t) - d, 
a a Cl' 

From equation (6. 1), we can put (6. 2) in the form 

e (t) 
a 

= 
f(t)-at-b 
a sin a, + cos a 

( 6. 2) 

( 6. 3) 

Let t
1

, t
2

; t.
3 

be the c.ritical point set belonging to [0, l] fer the B.A . 
.. ,.. ..t.. 

a···t + b-,- to { (without rctation.), By definition t 
1 

< t
2 

< t
3

, and for 

a f R, x (t.) forms a critical point set for (6. 2). 
a i 

It is interesting to note tl-i2L Lhc proof of theorem 6, 9 will not 

work for CJ./. R, since x (t.) i.s noL n ccssarily a critical point set, for 
(\I 1 

these rotations. 

Theorem 6. 10: If O'. / R, straight line approxi1nations for 

conti111..1ons funcLions d,·c not necessarily rotation invariant. 

JJroof: Frorn Fig. 4. 1 c'.nd 2. 2, the result follows. 



The result, theorem 6. 9, rnakes it a particubr]y simple 1natter to 

compute the best rotated straight line app_roximation if we know that 

,:-: ,:.: - 1 ,:~ 
0: f R. Given the B. A. for f without rotation, QI ::: tan a . 
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CHAPTER VII 

EXTENSION OF SOME RESULTS OF TORN.HE.IM 

To rnhcitn ( 19 5 0) gave the following definitions: 

Definition 7. 1: A class of functions C 1s said to be convex with 
n 

respect t.o a unisolvent class G of degree n on la, b], if f c C is 
n n 

continuous on la, b) and has at most n intersections with any mernber 

g EG . n 

Definition 7. 2: A graze point is a point of intersection of g(x) 

witb f(x} such that f(x}-· g(x) docs not change sign in a suitably small 

neighborhood of the intersection. 

Tornheim then proved that if f c C ·on [a, b] , and :i.f g E G , a 
n n 

unisolvent class on [ a, b] , then f(x)-g(x) has no graze points, under 

the condition that f has n intersections with g or n-1 intersections 

with g such that the intersections do not occur at a or b and such that 

sign(i(a.)-g(a)) = (-lt+l sign(f(b)-g(b)) is· verified. 

Th,~se results directly relate to the forrn of the error function 

at a a1:.n5.rna;,: approxi1nation since g'\x) necessarily has n intersections 
,,_ 

•Nith f Therefore, if f EC , e-··(x) has no graze points. 
n 

The ccn;pute:c results of chapter V has rnotivated us to consider 

the .foTm of the e:.ror function a.ta best rotated approxi1naU.on. In this 

case, f n1usL Le allowed n+l intsrscctio11s with rncrnbers ·of G 
n 

Dcfini ion 7. 3: f E Cn-ll with respect to a uni.solvent class Gn of 

deg1.ec· non [a,b], ii£ is continuous en ta,b] and f has atrnost 

n+l intersecbons with any men1hcr g E G , x E [ a, b). 
n . 

ln the t:hr.orcrns whic11 foj.Jo1.v we ,vill show that the resuHs of 

'~-:'ornhcfrn cfo .;;cneralizc to C t-l cl-"lsscs of functions. V{c also note n· 
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that both theoren1s ,vill he of use in characteri;.,,ing the forrn of the error 

::;:: 

function <d a _B. R. A. , where, it is assumed, a ER, and f E Cn+ 1. 

Theore1n 7. 4: If f E Cn+ 1 ancl has n+ 1 intersections with g E Gn, 

a unisolvent class of degree n on [a, b] , then f does not graze g 

anywhe:re, x E (a, b). 

Proof: Following Tornheiln, we shall prove the theorem for n::: 1 

and tbcn reduce the general. case to this one. Let x
1 

and x
2 

be the 

tvvo points of intersection, belonging to (a, b). Case A: x
1 

and x
2 

are 

both graze points. Case B: Only x 
1 

is a graze point. 

Case A: 

'---·l----+---t--- ,_, __ ...,, ---- ·--· ---.---·-·---·-·. - -

a x 
1 

z x
2 

b 

V/e define g 1, g
2

, g
3 

E Gn 

g
3

(z) ·= f(z), where x 1<z <x
2

. Since f-g does not change sign on [a,b], 

we:. wiH ass,::.me f-g ~ 0, and is therefore zero only at x 1 and x2" Hence 

gi> g, for aJl gi. ,Ve.. will not consider the cases g 1> g
2 

and g
2

> g 1 

distir,ctand shall assume g
2

>g
1

. We will assume that all the g. 's are 
l 

distinct. Hei1ce, there arc three distinct cases which we must consider: 

l) a >,Y >rr >g· 
03 oz t:>} ' 

J)g >a >g >g 
·' 2 ° 1 3 ' We note ~hat for 

a ui1i.sc,Jvcnt class 0£ degree one, i{ two n1eD.1.bers of the class intersect, 

thl:'y a re ec1ual over the who] e iitte 1·val. 

1f g
3 

is not a graze pcint, we arc immediately led to a contradi.c­

tio11. H!'..:11cc ,ve shaJl assu1nc g
3 

1s at a gra:;>;e pofr1~ at z. 
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Al: 

Case Al is impossible since g
2 

must ·be below g
3 

and above g 

without intersecting either, which irnplies g
2 

rrmst intersect f more 

than once more. Cases AZ and A3 follow similarly. 

For cases Al, AZ, andA3, the g.'s were assumed distinct. 
1 

Under the Case A4 assun1.ptions, there can be no othzr intersection 

of g
1 

with f. Hence g
1

-f> 0, x E (a, b). If g
3

> g
1

, the contradiction is 

irnmedia.f:e. If g i > g 3' then g
3 

is below g 
1 

and above g which implies 

it in!.c.1:sec.:ts £ mo:re than once more. 

AS· a . • t,z - g
3 

(same as g 
1 

Under the Case A5 assumptions, if g2 >g 1 , then gJ rn.ust have 

rnore than one more intersection with f. If g 1 > g
2

, then g
2 

rnust have 

m')rc th2,n o:re rnore int·erscction ·•Nith .f. 

s ecLions with £. 
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Case B: 

,_._, • t --~-·· I 
a x1 z b 

The functions g 
1

, g
3

EG 1 are assumed dj stinct and defined as in 

Case A. If g
3

> g
1

, then g
1 

niust have more than two intersections with 

£ si,:1ce g 1> g. Hence, we assume g 1> g
3

. Under this assumption g
3 

n1ust have an intersection with £ to the left of z (and hence z is a graze 

poi1Jt). Since g
3 

and g are distinct, they cannot intersect anywhere on 

[ a, b] and in particular at a. We define g
2 

E G i such that g (a)< g
3 

(a). 

But this irnplies g
2 

has three or more intersections with £, and there­

for a contradiction. 

If g 
1 

= g
3

, we construct g
2 

in the previous manner and again 

1·each a conlradiction. This finishes the cases for n= 1. 

We next consider the general case. Suppose f grazes g at x,. 
i 

Let [a', b '] be a closed interval wilb x 
1 

in its interior and containing 

2bsc.issas of none of the other n points of intersection. If we take only 

those functions g of G which pass through the other n-1 po.i.nts of 
11. 

intcrs2ction and rcetrict them. to [a',b'], we obtain a un.iso]vcnt class 

of degree one, G', in which f restricted to [a', b'j 1s a c
2 

function £ 1
• 

But t.hen i' cannot graze any f 1.1nction of hence f docs not graze g 

S::oro1lay_'I_: S: If f E Cn+ 1 ?tm·! has n intcrs1cctions with a g E G
11 

btit cr..:i. at x 0 a or b, and if sign(f(a)--g(al)::. (-1)
11

sign(fib)-g(b)) Lhen g 

and 1 inlc::.-t;cct exactlv n lirr1es. , 
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Proof: There could be at n.1.ost one rnorc intersection ctncl if this 

occurred f .. g would change ..,ign at each intersection according to 

theorem 7,4 so that sign(f(a)-g(a)) -- (-lt+
1

sign(f(b)-g(b)). This is a 

conlradiction to the hypothesis of the corollary . 
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