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ABSTRACT
BEST ROTATED MINIMAX APPROXIMATION
(Order No, )
by

Richard Omer Michaud, Ph, D,
Boston University Graduate School, 1970

Major Professor: Robin E. Esch, Professor of Mathematics

In this dissertation we consider the minimax approximation of
functions f(x) € C[0,]1] rotated about the origin, aﬁd the characteriza-
tion of the optimal rotation, oz*, of f in the sense of least minimax error
over all possible rotations, The paper divides naturally into two
sections: a) Existence, uniqueness, and characterization for un.isolvent
minimax approximation for each rotation @ of f. These results are
applications of Dunham (1967). b) Existence, non-uniqueness, and
computation of o:*; derivation of necessary conditions for the minimax

S
approximation at ¢ , which are applications of Curtis and Powell (1966);
and documentation of the effect of rotation on the minimax error by
means of computed results., The parameter space for the minimax
error for the rotations of f is [0,7]. Hence, a parameter search for
the computation of o/* is feasible, However, we also dasigned an
algorithm for computing a;* by means of an iterated linear programming
approach due to Esc}; and Eastman (1968). In most of the cases we have
examined, the error of approximation at a# has n+2, rather than the
necessary ntl, equioscillating extrema. However, we show by example
that the existence of nt+2 equioscillating extrema at (,1’* is neither
ncc.ossa,ry, nor sufficient, nor locally sufficient. Some typical results

are given which show that a quadratic minimax approximation at o
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frequently has smaller error than a cubic minimax approximation,

“

If the mminimax error at ¢ is comparable to the minimax error of a

higher degree approximation, then the minimax approximation at a
is, in general, a better curve fit, since it has fewer changes in direction,
A fairly complete theory for straight line approximation is presented.

Finally, sorne theoretical results on the form of the error function at

e

& minimax approximation at ¢ are given, which are extensions of

some results due to Tornheim (1950).
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CHAPTER 1

INTRODUCTION

The central theme of this paper is the minimax approximation of a function
f rotated by an angle o about the origin and the characterization of the angle of
rotation of least minimax error. The resulting curve in the X, Y coordinate

system will be referred to as an "g-rotation" of f.

Let f(x) be an arbitrary given continuous real-valued function on [0,1].

be the

Let G = {g(A,x)} be a given set of admissible approximations and let ||+
uniform or L_ norm on [0,1]. Then a minimax or best approximation (B.A.) to

fis a g¥ = g(A¥,x) belonging to G such that

lle@) — g* @l <|[f@) ~ g©)ll=  sup _[£(t) ~ g(t)|
tel0,1

for all geG. Here A stands for the real parameters AysBgseensdy of the approx-
imating function g.

The class of approximations which we shall consider is the unisolvent class
of some fixed degree n. |

Definition 1,1: The class Gn of n-parameter continuous functions is said
to be unisolvent of degree n on {a, b, if for any distinct points SSERRE X0 of
[a,b] and any real numbers Yyreees¥, there is a unique g(A, x) €Gn such that the

equations

g(A,;«i)=yi . i=3, . o0t

are satisfied.
This definition implies that the difference of two distinct g1 & cGn can
have at most n-1 zeros.

We will wish to consider two special cases of unisolvent functions of



degree n: The class Ln of Chebychev or geuneralized polynomial approximations
n

(Rice, 1964, p. 55) of the form: X aj mi(x); and Pn
-i=1

degree n-1 or less. The class Pn—l has the additional property of being unisol-

Y the polynomial class of
vent over any closed interval.

Let f be parametrized by te[0,1] and let yU(t) denote the point f{t) rotated
by an angle oz. We denote the abeissa of the point y(v(t) in the X, Y coordinate

system, xa(t). The error function of an ¢~xotation of f by g EGn s
t)=yv {t)—=olA,x .
eu® =¥, 0= glbx ©))

eo,(t) is evidently periodic in & with period 27,

’,

We define e*(¢) as the minimax error for an r-rotation of £, and e¥{g*)
as the infimum of e* () for all rotations ¢ €[0,2% ), A best rotated approximation

s is a B.A. for an g¥*-rotation of f and the

(B'R'A' ) is a gz;.yceGn SuCh that gg/ st

2

upiform error of approximation is e™{n*).

We will be concerned with seeking the solution to two classes of preblems:

1) Existence of B.A. for any ¢-~rotation of f and characterization and
uniqueness of B, A. in terms of the sign of the error at extrema of the error
function e(*x(_t) for the approximating class Gn'

2) The existence, uniqueness, and computation of o*, the characterization
of B.R.A. I, tor the Chebychev and polynominl approximating classes, and the
documentation of the effect of rotation on the minimax error.

For many approximating classes of interest; e. gf , the polynontial class
Pn" T the minimax evror is invariant with respect to a translation of the function,
but the orientation of f with respect to rotation can significantly cffect the mini-

max ervor. If our purpose is to compute values of f accurately on some closed

interval, thea a minimax approximation (without rotation) is ideal. However, if



we wished to fair points f(xi), i=1,...,N, given as design specifications for
some physical surface, it is often the case that there is no a priori reason to
prefer one orientation over another. If accurécy of approximation is the only
factor to be considered, then we can dispense with questions of optimal orienta-
tions of the data by allowing sufficiently high degree polynomial approximations.
But for many applications, particularly in computer-aided design, a curve fair-
ing process requires the approximation to be relatively free of extraneous
changes in direction or "wiggles". In this regard, a polynomial B.R.A. of
degree n would, in general, have one less "wiggle" than'a B.A. of degree n+l.
The need for "wiggle-free" approximations has been, in part, responsible for
proscribing the application of minimax theory to automated curve fitting. The
angle ¢® defines an optimal curve fitting procedure with respect to the uniform
norm and the given approximating class. A B.R.A. is rotation-independent in
the sense that neither the approximation gz;* nor the error e®(o*) depend on the
given oxrientation of the function.

The problem of characterizing ¢* has been extensively studied in the case
of straight line approximation for the discrete Qz norm. The best approximating
line for_(y"‘; i called the orthogonal regression line (Linnik, 1961). Roos (1937)
has given a solution for a best approximating straight line in the 22 norm which
is invariant to rotation, translation, and linear stretching. Michaud (1969) has
given conditions for ¢* for straight line approximation in the Ilé norm.

In Chapter 11 we review the existence, uniqueness, and characterization
theorems of minimax approximation, examine the ¢-rotation error c-z(y(l;) in
detail and relate the minimax theorems to the set R, of ¢~rotations, such that
the curve remains a function after rotation. We also use some examples to

demonstrate that neither uniquencss nor full characterization are genersl



properties of ¢-rotation minimax approximation. These examples also serve to
motivate the definitions and results of the following chapter.

In Chaptef 111 we redefine the a~rotatiox; minimax a.pproximatioh problem
as the simultaneous approximation of upper and lower semicontinuous envelopes
of a uniformly bounded map and apply the results of Dunham (1967) to prove
existence, conditions for uniqueness, and necessary and sufficient conditions for
the ¢-rotation minimax approximation of f.

In Chapter 1V we define the best rotated approximation problem. We then

show that for every continuous function on [0, 1} or any subset thereof, possesses =

o~
3 p " P

a B.R.A. for the Chebychev class of approximations. The proof is a consequence Pl bty
§ cq"’**-gi¢{

of our result that e* () is a continuous function of . We prove that ¢* is not oy

in general unique. We then apply some results due to Curtis and Powell (1966)
to obtain necessity conditions for the best rotated approximation.

In Chapter V we present an algorithm for computing o™ and the polynomial
B.R.A. We then give some numerical results obtained using the algorithm and
a parvameter search technique. For most of the cases examined, the error of the
B.R.A. had one more equioscillating extrema than necessary, coinciding with
those instances for which the effect of the rotation parameter on .the minimax
error was 11’1§st significant. However, we give examples which demonstrate that
the error function of a B.R.A. cannot, in general, be characterized by n+
equioscillating extrema.

In Chapter VI we consider best rotated straight line approximation in
detail. In Chapter VII we present extensions of some results due to Tornheim

(1950) for characterizing the error function at a B. K. A.



CHAPTER I1
THE ERROR FUNCTION OF AN @-ROTATION OF f{

2.1 THE CLASSICAL MINIMAX THEOREMS
Results of the classical minimax theory to which we will refer
are the following (Rice, 1964):

Theorem 2.1 (Existence): If f is a continuous real-valued func-

tion on [0, 1] then a minimax or best approximation g;':€ Gn exists,

<.

Theorem 2.2 (Uniqueness): The minimax approximation gﬂc of

theorem 2.1 is unique.

Theorem 2.3 (Characterization): A function g* is a best approxi-

mation if and only if the error function, e(x) = f(x) - g*(x), has n+ 1
equioscillating extrema; i, e,, there exist n + 1 distinct "critical points, "

< < < < <
X, 0 X S%, <L Sx 1, such that

o(x.) = (11X, i=1,,..,n+]1, where 1] = [lete}l]

If e(x) satisfies the conditions of theorem 2.3 then e(x) is said to have

"full characterization., "

“2.2 THE ERROR FUNCTION ea(t)

Let f“’.) be a continuous real-valued function on [0,1]. We will
use t€[0, 1] to parametrize this function after rotation, Before
rotation the function is defined by x=t, y=f£(t). After rotation by an
angle o (which we will measure positive clockwi.;se‘), the curve is given

by the parametric equations

x = x (t) = tcose + {(t) sina
5 (2.1)
y. = y(,,<t) = ~teing + f{t)cosa

where t ranges from 0 to 1. We will refer to the curve (2. 1) as the



result of an "g-rotation'' of £, If xa(t) is monotone, the y given by
(2.1) is a function of x; otherwise it is not; i.e., the curve has become
multi-valued, :

The range of abscissa values of the a-rotated f is the range of the
continuous function xd(t), which we will denote as [a,b]. Thus if we
wish to exploit unisolvence, the class of approximations must be
unisolvent over the interval [a,b].

Now consider an approximation g(A, x) € Gn to the g-rotated f.

Parametrized by t, the error

ea(t) = Ya(t) q g(A,xa(t)), te[0,1] (2.2)

is 2 continuous function in t and periodic with period 27 in o. We note
for future reference that ]ea(t)| and hence Hca(t) || is periodic in «

with period 7 for polynomial approximation. If Gn = Ln then (2. 2)

becomes
n :
e (t) = y (t) - ) a;0,(x (1), t €[0,1] (2.3)
i=1
and if G . P then (2.2) is of the form
n n-1
e (t) = y (t) - p 5 a)(x (t), te[0,1]. (2.4)
i=0

2.3 THE SET OF ROTATIONS R

Definition 2.4: R = {o/| the ¢-rotation of f is a function}.

Proposition 2, 5: Let Gn be a unisolvent class of functions of

degree n defined over a range [a,b] which is sufficiently large to include
the range of values of x (t) for all ¢ € [0,27]. Then o € R if and

only if the se: of functions G is unisclvent in t.



Proof: If o €R, the mapping t = xcv(t) is one to one, and xa(t) is
a monotone function of t. Given distinct tl, v tn €[0,1], and any real
numbers Yyree ¥y then xa(tl), S ’Xo:(tn) are distinct points of [a,b]

and hence we can solve g(A,xa(ti)) b 71 i= 1,.:,:n uniquely.

L

xa(tl,) = ch(tz); we cannot then have

If a)ﬁ'R, there exists t,,t, €[0, 1},1:17é tZ’ such that

g(A,x (£)) = y) and g(A,x (L)) = y,.

Theorem 2.6: If o €R, then g-rotation minimax approximation

exists, is unique, and is characterized by n+ 1 equioscillating extrema
in t.

Proof: By theorems 2.1, 2.2, 2.3 and proposition 2.5.
2.4 THE a-ROTATION OF f AS A UNIFORMLY BOUNDED MAP

The purpose of this section is to anticipate some results and to
motiva.tc the approach taken in the following chapter on q-rotation
minimax approximation,

Uniqueness of approximation is not a general property of
a—rotatioﬁ minimax approximation, Let f(x) be the contingous function

of -Fig. 2.1 and let Fig, 2.2 be its rotation by 90°,

b’ X
4
!
i -
: -
B -
1 T _7/./-21 txtal
{::.‘_._.- - ._._VM.’ =
i “~ .
{ o
N =
¢ il g
z -




ea(t)
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If our sect of approximations is the class of straight lines, then
by theorem 2.2, axta in Fig. 2.1 is unique, The approximation
al’x G ao' in Fig., 2.2 is clearly not uniquc.since any straight line within
the indicated pencil of lines would minimize the maximum error,

It is not possible in general to characterize a best approximation
of an g-rotation of f by equioscillating extrema of the error function

ea(t) as in theorem 2.3. The following example serves to illustrate

this point:

Y : ‘ v!

/

~

ot Aot S L A A A BT e e e 4 e 4 i A s

S - ‘ e
Fig. 2.3 e R Fig. 2.4 R

-..‘.<t o
/ I e

Fig. 2.3 is the given continuous function f(x) is to be approximated
by a straight line (so that Gn is a unisolvent class of degree two), In
Fig. 2.4 f has been rotated by an angle o and the resulting curve is best
approximated by the straight line axta,. Fig. 2.5 is the resulting

b 7=

error function e (t) of Fig, 2.4 graphed as a func’ion of ¢,
&




Although Cn(t) has three (n+1) extrema, they fail to oscillate.
However, if we plot the error with abscissa x instead of t, then

we obtain Fig, 2.6,

Y
e(x)
\\«.. //’/\l
O I \M‘w“ """'(\Zx‘(y(t:?) ) /l
3 D
AN (t)) x (t,) // b X
7z
Fig. 2.6

We define the error e(x) by taking, in each region where the curve
is multivalued, the branch lying farthest from y = 0 (as shown by the
solid portions of the curve in Fig. 2.6). We obtain e(x) as an, at most,
bi-valued map on [2,b] which has discontinuities. However we thereby
regain the nt+l equioscillation property, with critical points
a < xa(tl).‘-i Xcv(t?)) < on(tZ) < b as seen on Fig, 2.6.

The redefinition of the error illustrated in Fig. 2.6 has become
the crucial oEservation leading to the characterization and uniqueness
‘theorem.s of the following chapter. We note that the equioscillation
property in x is an easily verifiable condition on *he extrema of ea(t),
We need only compute xcu(ti), renpumber the ti‘s such that
g 4i1) axa’(tiz) < XOI(ti3) and examine the signs of ea(t) at til, tiz, ti3
to determine whether the error Coz(tij) does equioscillate.

The error function e(x) of the curve given in Fig. 2.4 is simple
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to compute since the curve is at most bi-valued as a mapping in x,
However this is not in general the case, Such examples as sin(n 7x)
and xsin(1/x) when rotated by 90° can be multivalued or infinitely
valued at a given value of x, We have the following obvious result:

Proposition 2. 7: If f(x) is a continuous real-valued function on

[0,1], then the g-rotation of f, defined as a mapping from x €[a,b], is

a uniforrmly bounded map.
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CHAPTER IIT

THE MINIMAX APPROXIMATION OF AN @-ROTATION OF {
3.1 INTRODUCTION

In this chapter we show that the uniform approximation of an
. o-rotation of f in x can be defined in terms of thé simultaneous uniform
approximation of an upper and lower semicontinuous function., Our
constructed approximation problem is exactly that considered in
Dunham (1967). Dunham's resulté give a solution to the uniqueness and
characterization of a minimax approximation of an ¢-rotation of f,
However, these conditions depend on properties at the extrema of the
constructed approximation in x. We bypass this limitation by relating
the extrema of ea(t) with the extrema of the constructed semicontinuous
approximation and proving the equality of the norm of the errors. We
obtain, as a result, for each g-rotation of f: 1) existence of a minimax
approximation, 2) necessary and sufficient conditions for minimax
approxiration in terms of the signs of the error at extrema of ea(t),
and 3) conditions for uniqueness of minimax approximation in terms of

the extrerna of ea(t).

E S - THE UPPER AND LOWER ENVELOPES OF AN ¢-ROTATION OF f
In the construction which follows we implicitly assume a given

o €] 0,27;'] . We will not need to consider whether thc o-rotated f. is many

valued in x or single valued, and hence the following analysis is intended

to apply to any a-rotation of f,

Let «o€[0,27, [2.b] be the range of Xa,(t)’ te[0,1] and

m

513 .

w

3 o Eoas -k a2 w2 R
S 1 e ] 0 e 4 x€[a

—
fo—
~—

r
S
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f (x) = sup y_ (t) £ (x} = 1af y () £3:.2)
Ly v L i

~

e (A,x) = L (x)-g(A,x) € (A,x) = f (x)-g(A,x) (3.3)

e(a) = max { |le (A, x)[le_ (A, 4. (3. 4)
Let (3.5)
f+(x) = inf sup f+(u) f (x) = sup inf f (u)
6 >0 lu-x|<8 §>0 |u-x|<8&

By definition, " and 1~ are the upper and lower envelopes of
ya(t) and hence are upper and lower semicontinuous functions of x,
From (3.1) and (3. 5) it follows that

£7(x) S f_(x) < f,(x) it(x) (3.6)

for all x €[a,b].
We define the corresponding error functions of f* and £ as:

e (A,x) = £(x)-g(a,%) e (A,x) = £ (x)-gA,x) (3.7)
e(A) = max{ He+(A,x)||, He_(A,x)H}. (3.8)

Since {1 and £~ are respectively upper and lower semicontinuous
functioné of x, it follows that e+(x) and e _(x) are respecti{rely upper
and lower semicontinuous functions of x for continuous approximations
g(A,x). Since an upper semicontinuous function assumes it maximum
value on a closed interval, and a lower semicontinuous function assumes
it minimum on a closed interval (Royden, 1963, p. 40), then c+(x)
assumes its maximum and e (x) its minimum on a closed interval,

3.3 THE DUNHAM THEOREMS

The approximation problem defined by e(A) of (3.8) is exactly that



of Dunham (1967). Before we consider Dunham's results, we make the

following definitions:

Definition 3. 1: An extremum point of the approximation g(A,x)
. ' : : + e : .
is a point X, € [a,b] such that { (xo) - g(A,xo) or f (XO) - g(A,xO) is
equal to *e(A),

Definition 3. 2: If xo is an extremum point of g(A, x) such that

) -glA,x) = -(f (x)-g(8,x) = e(A)

then X is said to be a straddle point,

Definition 3. 3: Extremum points of g(A,x) which are not straddle

points are termed alternation points.
The results of Dunham (1967) which we will refer to are the
following:

J.

Theorem 3. 4(Dunham): A minimax or best approximation g*(x) =

g(A:ﬁ,x) ¢ Gp exists which minimizes the uniform error to f+ and {  for

all: s €&
g n
<

. Theorem 3, 5(Dunham): g'“(x) is a B.A. if and only if g*(x) has

a straddle point or r.1+1 alternation points oscillating in sign.
Theorem 3. 6(Dunham): If g* has n+l alternation points

oscillating in sign then g* is unique.

3.4 RESULTS OF MINIMAX APPROXIMATION OF AN ¢-ROTATION OF f
Our goal is now to relate g-rotation approximation in x, about

which we know a good deal, to approximation in QOJ(L).
The following result due to Diaz and McLaughlin (1969) will be

uneeful,

Theorem 3.7: e(A) = €(A).



14

Lemma 3. 8: g(A) = Hca(t)ll.

We will denote |le (t)]] as e (A).
g o o
Proof: We will assume positive extrema throughout the proof.
It is evident that sup !e~+(x)| = eO'(A) since yo/(t) = f+(x) for all
tel .,
X

Assume sup IeN+(x)] > ea(A), and let t:1 be an extremum of ea(t).

Then by hypothesis, ea(A) = ya(tl) - g(A,xa(tl)) and
< &
y (t)) < £,(%), x = x _(t).

But ya(tl) - g(A,xa(tl)) 2 ya(t) - g(A,xa(t)) for all t€[0,1]

v

ya(t) - g(A,xa(t)) for te€ TX.
Hence Ya(tl)—g(A,Xa(tl)) = sup Ya(t)"g(A,X)
= f+(x).—g(A,x) ;

But this is a contradiction.

Theorem 3.9: ea(A) =.e{A) .

. Proof: By lemma 3.8 and theorem 3.,7.

-~

Theorem 3. 10: t, €10, 1] is a point of extrema of eogt) if and only

if ch(to) is an extremum of e(A).
Proof: We will prove the theorem only for positive extrema of

{3%)

e (t) and extrema of e
o *

Evidently, if to is an extremum of e (t) then xG’(to) is an

v

extremuin of e, (x).

Now, let X, be an extremum of (‘.+(X) and let

T = {tle (t) = maxe (t)}.
o o
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We assume there exists XO such that for all te T, xa(t) # x5 i.e., we
arc assuming that it is possible to create extrema by constructing semi-

continuous envelopes of an g-rotation of f. Then

e (£)> e (t) = e (t)

teT E2£2 T teX
; X

o)
where TX0 = {t[xa(t) = xo}.
Since f+(x Yo e it sup f+(x), where f+(xo) = max y_(t)
6>0 |x—xo‘<6 tETX

£

. . +
and T closed by contunuty of x ,(t‘)’ then f (X ) i (X ),

Hence there exists § > 0 such that for x€Z = {x”x—xo |<s },

Zoy = {tlxa(t) =x, x€Z}, forall t €Z s t £T. Otherwise there exists
an infinite sequence of {ti} € T such that ea(ti) > e (x), x€Z which
implies that there exists a limit at x and x (t') = x , e (t')2e,(x )
0 o ) o +0
by continuity of ea(t).
~ Therefore e (t) 2 ea(t), which implies

o
tgT teZ,

ea(t) > eo_/(t) = sup ea(t) = and sup eal(t) = £ (x )-g(A,xo).
teT tf7T teZ., 5>0 teZ,,
But this contradicts the fact that X is an extremum and the max of
eoj(t) is equal to that of eq}_(:‘:), This concludes the proof.
The essential implication of theorem 3, 10 is that no extrema are
created in constructing the upper and lower envelopes of an @-rotation

of £ in x, However it is possible that the relationship befween extrema

in e (t) and €.(x) or e_(x) is not cne to one, The following corollary

z -



provides the solution to this question,

Corailgry 3, 11; i) M X is an alternation point of the approxima-

ticn then there ‘exists a unique t, € TX such that to is an extremum of
o
ea(t).

ii) If X is a straddle point of the approximation then there
exists exactly two points tl’ t2 € I‘xo, tl # tZ’ such that tl and tZ‘ are
extrema of ery(t)'

Proof: Since an g-rotated continuous functien is 2 Jordan arc,
given any x €[a,b], if t,, t, €T, t; # ty then ya(tl) 7 ya(tz).

Coroliary 3. 11 implies that if g(A,x) has no straddle points then
there are the same number of extrema of eO,(t) as alternation points
of glf, X,

We now state existence, characterization, and uniqueness results
for g-rotation minimax approximation,

.,

Theorem 3, 12: (Existence): The minimax approximation g* €Gn,

of the ¢-rotation of a continuous function, exists,

Theorem 3. 13 (Characterization): gx = g(A.*,xa(t)) €G_isa

minimax approximation to an o¢-rotation of f if and only if

a) there exist extrema t,, t, of e{v(t), £ # tz such that

§7.°2
xa(tl) = Xa(tz) and ea(tl) = -ea(tz) or
b) there exists nt+l extrema Ll, oy ’tn»'-l of 60/(” such that, for

some reordering ti

x (b ) <x (¢ ) <...<x(t Jand e ()= (-1 |le (1)),
o 11 o 12 o 1n+l o 1J- (e}

Proof: By theorem 3.5 and corollary 3,11,

Theorem 3. 14 (Uniqueness): If g:': has property b) of theorem




3.13 then g is the unique minimax approximation,

Proof: Corollary 3,11 and theorem 3. 6,

17
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CHAPTER IV

BEST ROTATED APPROXIMATION: THEORETICAL RESULTS
4.1 DEF]NI’IH()‘NS
In this chapter we shall be primarily concerned with the Chebychev and
polynomial classes of approximations and hence with the error functions (2. 3)
and (2.4). However, we make the following definitions for the unisolvent class
Gn'

Definition 4.1: Given a unisolvent class of functions Gn’ a continuous

function f on [0,17, and a given rotation ¢, then e*(¢) is the error of the -

rotation minimax approximation; i.e.,

e¥(n) = ) — gA¥*, x_(©))|=lly (€)= g@¥* x_())!
o tj:(‘;f’l]‘ya g%, x, )=y, © - g x

By the results of the previous chapter, g% exists for each «. In this
chapter we will be concerned with optimizing ¢; i.e., with finding * for which
e¥ (o) is least.

Definition 4.2: A best rotated approximation (B.R.A.) is a g&** Gy such

that g(;c is a best approximation for the ¢*-rotation of f such that
e*(a*) < e¥*(w) for ¢ €0, 277 3

e* (e) is a bounded periodic function in o with period 27 (period 7 for
polynomial approximation). We shall now show that it is continuous for g sLn.
4.2 EXISTENCE OF BEST ROTATED APPROXIMA TION

_______ o then the length of the interval [a,a, by s

the range of Xcz(t)’ is never zerxo, for all @ €0, 7).

Proof: Let M(w)=h —a , be the length of the interval of the range of
T 5 o =
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er('t)' Let u = inf M{ry). M(n) is continuous and bounded on (0,7 ] and hence
o

achieves its infimum. If u =0, then there exists ¢' such that
xN.(t) =tcos o' +Hf(t) sin ¢v' = ¢

Now sin o = 0 when ¢« = 0 or 7 and hence when M() is not zexro. Thus at ¢',
f{t) =—c/sin &' + tcot o'

But this case is ruled out by hypothesis. Therefore u # 0.

Theorem 4.4: If f(x) # a,x + ag then e¥* (o) is a continuous real-valued

function of v, where G_ = L .
n n ;

Proof: The proof is indirect. Suppose e* (o) is not continuous; then there

exists v € [0,27Fkuch that e*(g) is not continuous at - Then there exists €>0

such that in every 6-neighborhood of e there exists ¢ such that |e¥* () e¥ ((yO)l

<€,
We discuss separately the cases A anpd B.
Case A: [e¥(x) = e¥* (og)|= €™ (@) — e*(a)
o oo
* 17,0 = 2 a0k ) I=lly,, ©=2 & "o, ©)]
where a”

K denotes the kth coefficient of the Chebychev best approximation of

degree n for the ¢-rotation of f.
.
Since |lv () - 0o fx £33 lslly 25 Yy
Since Iy(x(t) z a, (_Dk(xw(t))l, "3,\:\") a, gok(x(y(t))]}

then e¥* (o) — e ((y())

3 0 Yy 1l L |
< [[y(y(t)—- Za coL:(xQ(i,), e !‘yao.(t)— . ay gok(xofo(t))l

«
>

(¢4
ly ©—y_ ©+1Za, Yo, & ©)-o 6 ©)
Lx (& 0 i }‘\ y P S () 0



(64

' — > 5 3 0 | 5 X - I (A
< lvy(y(t) y”o(t) I+ 2 | a, H}(pk(xo\/(t)) (_ok(x(vo(t)) - (4. 1)
Since
7
53 / t)) !l < i
12'a, ok(xwo(t)) < Zl!y%(t) l

the coefficients of = ak(yo @k(xa(t)) are bounded (Rice, 1964, pp. 24-25). TFor
sufficiently small 6 >0, since ya(t) and x(y(t) are continuous functions of ¢v, and
the gok's are continuous functions, (4.1) can be made less than €. This is a
contradiction.

Case B: From case A we can immediately conclude a similar result to

(4.1); 1.e.,

e*(rg) — e* (o) < llyﬂlo(t) —y,O"+ 2o |llg 6 ©)- cok(x%(o ) (4.2)

Since for all ¢, Hya (t)!" is bounded, -then there exists a constant N such

that
12 a0, & @)= 2 Hyn’(t) ll< N, for all welO, 7] . (4.3)
o ' -— (y -

Let C’:(t,,ak) 2 a, gok(xu(t))

be a best approximation of ycv(t). Hence the {al?"} satisfy (4.3). If the {ag} are

unbounded, then there exists a K and a sequence Oyreees .r\']., ... such that aKn!j
is unbounded; i.e., | aK.'jl —e, joo,
We can then choose a subsequence of c\"’j such that
o, o,
max |nk3!ﬁ|aK]| (4. 4)

k
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Finally, since o €[0,2%), we choose a subsequence of ‘mj satisfying (4. 4)
such that ozj i A

Now consider the sequence

: oy ozj @, o
”bj(t’bk) = Z(ak /aK )('Dk(xoz(t)) =& (t,ak )/a.K s | O TS N (4.5)
RS . 3
Since the magnitudes of [ak ]/aK J| are all bounded by unity, we can extract
a subsequence converging to bl'<’ and since (4.5) is a continuous function defined

on a compact set then

0l (0) + éo by @ (1) =0 . (4.6)
KZK

Equation (4.6) is defined on some non-zero interval by lemma 4.3. But
this contradicts the unisolvence of (4.6). Hence ag must be bounded for all rv.
Therefore, for sufficiently small 6 >0, (4.2) can be made less than ¢,

which is a contradiction.

Proposition 4,5: e%* (o) is a bounded continuous real-valued function periodic

with period 27, provided f(x) # ax +b, f continuous on [0,1],

Corollary 4.6 (Existence): The optimal orientation * and the best rotated

approximation g&“% € Ln exists for continuous f defined on [0,1], provided
f(x) #ax + b.

Corollary 4.7 (Existence): If one of the @1,_'3 of the Ln approximating class
AN

is a non~-zero constant, then ¥ and g("l;"* exists for all continuous f(x) defined on

[0,11.

Proof: If f(x) = ax + b, there exists «* such that e (@*) = 0 (sce corollary

O

.

(&2}
~—

From corollary 4.7 we can conclude that polynomial B.R. A, exists for all
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feCl0,11. We note that if the functions cf)k, k=1,...,n, are lincarly independent,

the proof of theorem 4.4 is unchanged and hence the results, proposition 4.5 and

corollaries 4.6 and 4.7 follow.

Corollary 4.8: If f is defined on a finite point set or any subset {ti} of
[0,1] such that the cardinality of the set {xa (ti)} is greater than or equal to n for
all ¢ €l0,27], then e¥(¢) is continuous on [0, 27].

Proof: 'The conditionh on the cardinality of the set { xa(ti)} guarantees that
there will be enough points at any ¢, and hence at ¢' of the proof of theorem 4.4,

so that the contradiction following from equation (4. 6) holds.

Corollary 4.9 (Existence, discrete case): If the cardinality of the set

{xa (ti)} is greater than or equal to n for all. ael0, 7], then o™ and g(“;;ﬁ Ln exists
for f defined on any subset of [0,1].

In the computation of ¢* and g &“%, we will often find it desirable to replace
the interval [0,1] by a finite point set and seek an approximation which is optimum
on that set. The following result due to Ch'eney (1966, p. 86) relates the continu-~
ous and discrete eo-rotation minimax error, . We will need to establish some
notatlzion. Let X(y be the range of xa(t) and ch be the subset of points xa (ti) SXa

for mel0, 7). We define

Y [=max inf |x—y]| .
qua era

Theorem 4.10: e* ((v)!Y - g® (O‘)]X as |Y |- 0. Evidently c"“(C‘f)IY
(47

X o o’ o

< e¥® (o) }X - Let rvc'ii‘ and rgc* denote respectively the optimal rotation for f

o

defined over the point set {ti} and [0,17]. ‘Thene* ((\/(’1*) <e¥ (0((;*) and e* (o{('i“)

3

- o
@ c

¥) as s?}')[\’al = 0. If &

is unique, then ¢ ¥~ o ® as suply |~ 0.
¢ e, il o}‘ -

P PITTYV R INNT 7 7 = N alal - ar
4.3 THE NON-UNIQUENESS OF o?

We will prove by constructing an example that ¥ necd not be unique for
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continuous functions defined on [0, 1] for the Po class of approximations. We

will need a result from Chapter VI which says that a best rotated constant approxi-
mation must have three equioscillating extrema or a straddle point. By examining
Fig. 2.1, we see that there exist essentially three candidates for B.R.A., those

given in Fig. 2.1 and 2.2, and in Fig. 4.1 below.

% (x)
fiex
L :
X
Fig. 4.1
From purely geometric considerations, the approximation of Fig. 4.1 has
smaller minimax error than Fig. 2.2. Kweseth= -/-—2—31 the resulting minimax

¢

errors at ¢ = 0 or Fig. 2.1 and ¢ of Fig. 4.1 are equal. Hence o* is non-unique.

We can also conclude that if h < —-‘/2’—5— then ¢* =0¢R, and ifh > —[-;?3— then
o¥d R,

4.4 CHARACTERIZATION OF BEST ROTATED APPROXIMATION

4.4.1 'The goal of this section is to apply some results in the theory of non-linear
minimax approximation due to Curtis and Powell (1966) to characterizing Chebychev
and polynomial best rotated approximations where we assume { ¢ Cl[O, 1]. For

the Ln class of approximations we will need to assumc'that the (pk’s have continu-
ous first derivatives on [a,b]. &, A%) = &(, ,\l*, I }\1*) is a minimax

n+

approximation to f(t) if the parameters h]. ¥* are such that

S o A LN R (4.7)
t eI !

is minimized.
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The minimax approximation of e(y(L) is not in the form (4.7) of the Curtis
and Powell (C-P) problem. However, c(y(t) can easily be rewritten to fit the C-P

paradigm.
e, = 1= &) = 10— (O ~y, © +Za 0, & 1) (4.8)
t €[0,1]
where the C-P approximating function is
&(t,A) = 1)~ ya(t) 4 Eakwk(xm(t)) tef0,1] (4.9)
and the C-P parameters are

A A, A =8

5 LEpa SRRTE Nl ML Tl B

1 1’

Proposition 4.11: Let &(t,A) be the approximating function (4. 9). Let

& (t, A*) be the minimax approximation defined by (4.7). Then a C-P minimax

approximation is a best rotated approximation where Ai*= ai* and A n a*,

3 -
+1
Proof: We denote the minimax error of (4.7) as EQA¥).

Evidently EQ*) < e (a®).

117 * o 1 % * 4 3 1 ~1 ini 3% At
Given '\n+1 o, if Ai %ai then E(\*) is not minimax. If ?xn_l_l%(\ then by

definition 4, 2, E(A*) is not minimax.

¥*

Definition 4.12: Let r equal the number of extrema of e (t) where

¢, A%) = P, ak, aé’", L@ g aﬁ‘“,a*). We define an r x n+l matrix whose elements

are given by

Dij = B(I‘(t]., A) l : (4. 10)

n—é——i J ' 3=

If h* is the B.R.A. error then a is defined as the sign of the error e(*_‘c(t)
_ Vi

at the extrema ti



e (t.)=Sik"‘“, i=1...,1.

(x%' 1

In the event that r =n + 2, there are n + 2 square matrices of order n + 1,
denoted by Al’ ‘o9 3 Ar, where Ak is the matrix obtained by deleting the kth row

of the matrix D. Py is reserved for the determinant of A, multiplied by (- l)k.

k
Theorem 4.13 (Curtis and Powell): At A* the rank of D is less than r.

Theorem 4.‘14 (Curtis and Powell): At A%, if r =n + 2, the signs of Spseens

s are all the same as or all opposite to the signs of Ppoeess Py
An examination of the proof of the Curtis and Powell theorems reveals that
the C-P conditions are necessary at a relative minimum and hence must be satis-
fied at every relative minimum. For our purposes, the C-P theorems are tests,
on the basis of which consideration can be narrowed to those approximations which

satisfy the conditions.

By (4.10;) the C-P matrix is:

/’(”»’1(%“1))@2@“(%)) e 0l 0) Y, ) Gaop (e ) 4x, )

—

©, (Xm("z)) q)z(xa(tz)) Sy (pn(xa(tz)) yﬂ(tz) (Eaktpk' (xa(tz))+xr_ﬁ(t2)

ARG

//

(‘O}(ng(tr)) coz(x.(y(trv)) Tes @n(xa(tr)) y,‘:(‘tr)(Zakmk (X(y(tr)me(tr /,-’

Since the crucial property of the C-P matrix with respect to the Curtis and

Powell theorems is its rank, then D can be simnlified to

b =

[€165,E0) o 0, 1)) v, () Gay op & ()
1

i, (4.11)
!

1

6. (x h () Ba, o) (6]
\(co,l(xm(t,l_)) s nu(_v(tr)) )(y_(l'r) § ) Op (xa(ur),!
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At A%, e‘ji‘*(t) has characterization according to theorem 3.13 and hence
X
eo"f* (t) has either a straddle point extrema or at least n + 1 extrema in t(x 2n-+1).

4.4.2 CASE: BEST ROTATED APPROXIMATION HAS A STRADDLE POINT
EXTREMA

Theorem 4.15: If there exists one straddle point and r = n + 1 extrema,

then a necessary condition for Ln B.R.A. is that the derivative of the approxima-
tion in X(YiS zero at the straddle point.

Proof: By theorem 4.13, the rank of D must be less than n-+ 1. We assume
the straddle point occurs at t; and ty i.e., X(x(tl) = ch,(tz)’

/‘Dl(x(y,(tl)) 0 () Y, () Bay op ()

i
i

010, () v 0 (1)) ¥, (&) Bay oy G (€)))

{

{

? (pl(xm(t3)) S (Dn(xa(ts)) Ya(tS) (Zak (D}; (X(y(tS)) (4.12)
{

H

i

i

%
{
§
(pl(x(y(tnﬂ.) s ('Dn(xa(tn-i-l)) y(_y(tn-H) (Zak (Dk (X(y(tn-%l)?f
which implies
@l(xo,(tl)) con(xa(tl))

D] =@, ) -y, €)) Gagop & €))jo, & (€)) ... ¢ () [4.13)

Py (X(y (tn+1 1) e % (X,rx (tn+l)

The third factor is non-zero gince the set of functions {mk} satisfies the
Haar condition (Rice, 1964, p. 91). The first factor is never zero by the fact
that the g-rotation of a continuous function is a Jordan arc. Hence the secend
term must be zero at a best rotated approximation. This is the derivative of the

approximation evaluated at the straddle point.
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If we apply theorem 4. 15 to straight line approximation, we conclude that

the slope at a B.R.A. must be zero. In chapter VI we will verify this result.

Theorem 4.16: If there exists r =n + 1 extrema then a necessary condition
for Ln B.R.A. is the existence of two or more straddle points.

Proof: If there exists one straddle point, then (4.13) is valid. If there
exists an additional straddle point, then the third factor of (4.13) must necessarily

be zero.

4.4.3 CASE: BEST ROTATED APPROXIMATION HAS NO STRADDLE POINT
) EXTREMA

In this section we will be concerned with polynomial approximation. The

C-P matrix for G =P is:
n g

n-1 s k-1
1 x(y(tl)... XO: (tl) yot(tl) (1}2:0 kakx(Y (tl))

D = (4.14)
n-1
: n-1 k-1 |
1 xa(tr) e X (tr) Yo/(tr) (k?io kay X, (tr)),i
By theorem 3.13 there exist tyr vees L € (0,1 ] such that
xa(11)< P <Xo<(tn+l) and
i et
+(—¢) =y0/(ti)— P: a, xa(ti) s 12N (4.14)
k=0
Then we can solve for ¢, ay by the linear system
n=k \ ;
Tox, ") ... x (t) 1\ / € v, &)
._.l
¥ T BT "t ¢ e S | | a i
o ( 2 (__V.( 2 g n-1 s J (Y( Z) \ (4.15)
1 )
[ = l

_ §. 55 /
. o v i 1 ¢ : /
PrtE g n+l) ey X(y(rn+l) 1/ \ %o '/ \yr_y(tm‘-l )/"
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For polynomial approximation, the matrix D can be interpreted as a divided

difference.

We denote x X .xn; f ] the nth divided difference of a continuous function

f(x) on [0,1 1 (Davis (1963) and Milne (1949)) where

ix x2 NG f(X)i.

2 n |
% e f(xo)

0o

: X, f(xn)
18 PR B8 & (4.16)
o 2 +1
1 S xn xn
ie

When x # Xore X the denominator of (4.16) is a non-zero Vandermonde

determinant.
If pn(x) is the interpolating nth degree polynomial to the values of f(x) at Xy

f(xk) = pn(xk), K=0,cin; and f gC(nH) (0,17, then from interpolation theory,

fix) = pq(x) +R&)II (x——xi) where

(nt+1)
e i . ¥ (s)
Rx) [xxo...xn, f] = FES I se€(,1) . (4.17)
-l k-1
Consider the functionk (t) =y () ( £ ka, x_ “(t)) . (4.18)
o 0 ey F O ‘

n+l n+1

When ¢ €R, koz eC" [0,1], provided feC" "[0,1].

From (4.16) and (4.17) we define the divided difference of ka(t) as
[t [ k 1 from which we conclude that the determinant of D is equal to

V) k(sn'%‘]')(s)

iy 20, gl

where V() is a non-zerco Vandermonde determinant and
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Theorem 4.17: If EC(n)[O, 1], a*€¢R, and kg]%)‘c (t) >0, te(0,1), then eji‘/.x_(t)
© ‘

must have at least n + 2 extrema.
Proof: From the condition that ¢* ¢R, n +°1 equioscillating extrema are

kér,l,c) , if there exists only n + 1 extrema, the

necessary. But by the condition on
rank of the matrix D is n + 1 and therefore the approximation cannot be a B.R.A.

by theorem 4, 13.

Theorem 4.18: 1 £¢C™0,11, o eR, k% © >, 0for t€(0,1), and ey
- (<) 3
has exactly n + 2 extrema, then the extrema must equioscillate.

Proof: The n + 2 extrema must satisfy the conditions of theorem 4.14. But

ri) all the Ak determinants are positive (or negative) which

by the condition on k(sl

implies that the extrema must oscillate in sign.

4.4.3.1 P2 APPROXIMATION

Propogition 4.19: If the quadratic B. R. A. has no straddle points and if

f(z)(;<)> 0, x€(0,1), then ai% 0.

N
Proof: By (4.15) we cansolve for a;‘f; i.e.,

1oy ) x,@) 1 |
! /A | (4.19)

. . {

-1 y(y(t:4) xn((t4) sl

The denominator of (4.19), A, is not zero provided straddle point extrema

do not exist. Using (2.1) the numerator of (4. 19) can be reduced to
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o f(l:l) 1
f(tz)
+1 t3 f(ts) 14

(4. 20)

i——l ty f(t4) 1

Let k() = Cl. + 02t + c3f(t) for real ¢ and t ¢[0,171. k() can have at most
two zeros for all t €[0,1]; for, if not, k'(t) can have two or more zeros, te 0, 1),
which implies h"(t) can have one or more zeros t €(0, 1): But this is impossible.
Hence the last three columns of (4.20) are linearly independent. The first column
is independent of the last three columns since k(t) can change sign at most two
times, te[0,11].

Proposition 4.20: If the quadratic B.R.A. has af =0and ¢*#0, then

% =
aj 0.

Proof: We can write the determinant of the matrix (4.14) as

2 2 '
o i] x (t) x @) y, ) M.l x, () x @) v, )x @)
lD]" ajt : +2a2" -
3 2 ! > 2 :
’J xa(t4) xm(t4) ya(t4); 1 xa(t4) X, (t4) yoa(t4)xoz(t4)§

which, by our assumptions and (4. 15), reduces to
D] = aft e*A

1‘~=0.

By hypothesis, €* and A # 0. Hence, ata B.R.A., a
4.5 SOME LIMITING PROPERTIES OF o*

It may occur that, for a given degree Chebychev or polynomial approxima-
tion, a B.R.A. is useless or uninteresting as in the case of Fig. 4.1. However,

we can consider this result to be due to the fact that our class of approximations

was not of sufficiently high degree and did not sufficiently resemble the given
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function. Some justification for this feeling can be derived from the following
argument,

We will réqui.re the concept of a fundamental Chebychev set.

Definition 4.21: The set {(nk} of the Chebychev approximating class Ln is
said to form a fundamental Chebychev set if each element of C[0, 1] can be
arbitrarily well approximated by linear combinations of elements of the set {(pk}
(Cheney, 1966, p.87).

Theorem 4.22: If the set of functions {cpk} of the Chebychev approximating

class Ln forms a fundamental Chebychev set, then «* ¢ R, for n sufficiently large.
Proof: Let us fix the degree of the Chebychev class Ln' If the B.R.A. has

a straddle point, then for that rotation of the function, any approximati‘cn of higher

degree will not be any better approximation. But since a fundamental Chebychev

set can uniformly approximate any continuous function, then if the degree is

sufficiently large, o * €R.
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CHAPTER V
BEST ROTATED APPROXIMATION: COMPUTATION
5.1 ALGORITHM FOR COMPUTING B.R.A.

In this cl;apter we shall be concerned with polynomial approxima-
tion and hence with the error function (2. 4) which has n linear and one
non-linear parameter, The technique we describe for computing ar*
and the B,.R.A. is an iterated linear programming approach due to Esch
and Eastman (1968) which has the advantage of not depending §n charac-
terization properties of equioscillating extrema for minimax approxima-
tion.

We wish to minimize h subject to the constraints

|h| = Ie(tj,Ml j=1,...,N

which can he rewritten
h-—e(tj,)\)ZO e
h + e(tj, A)=0

and is eqguivalent to

n-1 K
5 3 2

h ya(tj, + }‘, a,x S(t.) = 0

k=0
£ 0 R e ML (5.1)

n-1 A

h + ya(tj) - }3 ayx (tj) > 0
k=0

Equation (5. 1) is not in linear programming form since the
parameter o enters non-lincarly., Our goal is to linearize (5.1) in «
so that we may use linear programming methods for its solution.

Let o = o + oy . Then



y (t) = —xa’o(t) sin§ o yao(t)cosﬁa

e -

-8 ozxao(t) + Yao(t)

on(t)_ = x‘a/o(t)cos"&a + yao(t)mnﬁa {5,2)

R

x, (&) +day (1)

o o
xn—l(t) = (x (t)cosda+y_ (t)sindaw )'n—l
fe! s Tk o
o o
n-1 Fege T | n-2
x Tty = x (t) + b (n-1)x (t)y  (t).
o o, o, a,

Using (5.2) the system (5. 1) can be linearized in the following
way where for convenience we shall write only the second term in (5. 1):

h + (l-aléoz)yao(tj) =, - (a1+6oz)xao(tj)

. |
-a,% (tj) - 2a,6ax  (t)y (t)
[e) (e}

5 2 £
SR X (tj) 3ajbax (tj)ya (tj) VR PO, R

(e} (&) £

e as Y - (aelabaxt Sty (8] 2 6.

n-Ua_ U n %, VY0
Finally, we rewrite (5.3) as
Yao.:tj) +h' -A_- Alxao(tj) —Azxzo(tj) : Bzxao(tj)yao(tj)
-A3XZ (tj)—B3x§ &)y, (-0 = LN
O O (@]
& e eyen w ey @) 2800
n-1 - S n-1 R s R

On a given iteration, we start with a guess o and obtain as a

- .oy Ty A .
rogram the values / 2 o ST

jeSeYs 188 B e A X :
3 0 n-1 2

crﬂs\{‘ioh nf the linear
soiutlon OI the Lineal

n-1

which gives the best approximation of (5.4) over the discretle point set
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{tj}, We can calculate
so = B, J2.A 3

and replace o'c; by the hopefully better estimate o, téa. In order to

limit § ¢ so as to prevent the process from moving too far from the

region in which the linearization is accurate, constraints of the form

2 € |A2(01d)| * B, 20

¢ >
(n-1) € [An_ 0

1(o1d) | = Pp-1
are incorporated into the program. The iterative process is halted when

& a becomes less than some preassigned tolerance. At a solution, A,iz'ai

and b 2 h,
5,2 COMPUTATIONAL EXPERIENCE

When ¢ is given, e*(a) is easily computed by standard linear
programining techniques, Since the parameter space of ¢ in the

o~rotation error e (t) is [0,7], a parameter search in @ for the B.R. A,

e
is feasible., With only a few exceptions (functions in Table 5.2 not
appearing in Table 5, 1), the results of the following section were com-
puted in this manner, Although a parameter scarch provides the only
real assurance thata B.R. A, has been found, it is something less than
a practical solution., The algorithm of secfi.on 5.1 was implemented in
the case of quadratic approximation. The linearization tolerance was
set at . 1, the iterative tolerance at j.O_S, o, was taken at 0, and

A.

2(0ld) at 1 for the initial iteration, The algorithm proved to be very

efficient and accurate requiring no more than thirtcen iterations, if it



converged at all, Normally, for the last three iterations, the linear
constraint was inactive. However, the algorithm did not converge for
- 3o -x2 L ~x

the functions: xze , € , X ¢ °, For all three cases the B.R.A. has

four critical points at o . For all other cases, the B.R.A. had five
2 2 2

critical points at a . It is also true that for_ the functions x?‘e—X R e >

xze—x, e:';((y) has a very flat slope for a large neighborhood of o;.: te. 1,
Fig. 5.1). At present the question is open whether the non-convergence
of the algorithm is due to roundoff error or to theoretical reasons
associated with the fact that the B.R.A. has only the necessary number
of critical points at o . A similar phenomenon was observed for the

: X : : 2x % : : L
function e, For the function e, e (@) has two relative mins, one

at ¢ = ,082, with five critical points and another at ¢ = 1,13 with four

critical points. Regardless of the starting value o, oOr the linearization

tolerances, the algorithm converged to ¢ = .082.
5.3 COMPUTED RESULTS

In this section we discuss some of the numerical results we have
obtained for second and third degree polynomial approximation, using
the algorithm of section 5.1 and a parameter search program, for
computing the optimal orientation oz*. These results are summarized
in Tables 5.1 - 5.2. For all functions listed, x€[0, 1], the discretized
point set consists of 101 points evenly distributed over the interval., In
Table 5.1, for each function, the first entry under minimax error, for
quadratic and cubic approximation, is the minimax error for @ = 0. The
second row gives the minimax error at a relative min, the angle at
which the relative min is achicved, and the number of critical points of

Often two relative rmins were
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found, In these cases, the minimnax error, the angle, and the number of
critical points are again tabulated. InTable 5.2, we compare the
unrotated minimax quadratic error with the best rotated quadratic
minimax error and the unrotated minimax cubic error. The minimax

errors of the third and fourth column both have the same number of

o

K

effective parameters., In Fig. 5,1, the minimax error e (o) is graphed
for the function xzc—xz, o€[-m/2, m/2], for quadratic approximation,
Figures 5.2 - 5.5 are graphs of e*(a) for the function er. Fig, 5.2
is ‘for a€[-m/2 /2], quadratic approximation; Fig. 5,3 for o €[0, 7/2],
quadratic approximation; Fig. 5.4 for o €[-7/2, ©/2], cubic approxima-
tion; and Fig. 5.5 for o €[0, 7/2], cubic approximation, Fig, 5.6 is a
plot of the function eZX and its minimax approximation together with the
rotation of er by oz* and its approxirnatiop by the B.R. A,
5.4 DISCUSSION

From Table 5,2 it is evident that the minimax error at a B.R.A.
may or may not be smaller than the error at a cubic minimax approxima-
tion, Two extreme examples of functions exhibiting this behavior are
the following: If f(x) = x3, the quadratic B.R.A. is much worse than the
cubic approximation. If f(x) = #/X, the cubic approximation, or any
polynomial approximation, is much worse than the quadratic B.R.A.
However we note that a second degree B, R, A. which has comparable
error to a cubic approximation is a better curve fit since it has fewer
wiggles. For the examples given, the B, R.A. often has significantly
smaller error than the unrotated minimax approximation of same degree,
It also seems signiflicant that (y* is often small so that even a slight

change in the orientation of the data with respect to rotation can
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dramatically effect the curve fit., We note that the ratio of quadratic
B.R.A, error to second degree minimax approximation is a factor of

twenty for the function er and a factor of fifty-eight for the function

2 . ’
™. Typical improvement seems to be in the order of factors of five

to ten. Fig. 5,6 demonstrates the effect of a twenty times better curve
fit to the function er. In this case, the B.R. A, is essentially
indistinguishable from the curve.

An examination of the data in Table 5.1 reveals that for most of
the. cases examined, the B,R.A. error had n+2 equioscillating extrema,
rather than the necessary n+l. In earlier stages of this study, it was

anticipated that nt+2 equioscillating extrema characterized, in some
2

way, a B.R.,A. However, this is not the case. The example xze-X
quadratic approximation, demonstrates that nt+2 equioscillating extrema

: : ix : ; ;
is not necessary ata B,R.A. The function e™, cubic approximation,

demonstrates that the condition is not sufficient. The function ezx,
quadratic approximation, had a relative min with n+l1 equioscillating

extrema, demonstirating that even for convex functions, n+2 equioscilla-

g s ! é : 2 -x2
ting extrema is not necessary at a relative min, For the function x"e s

cubic approximation, nt2 equioscillating extrema were observed at

ol
bAd

o = 1,306, At this point, ¢ (@) was not at a relative min. Hence n+2
equioscillating extrema is not locally sufficient,

The function ;\/g,x €[0,1}, has been useful as a counter-example

to many conjectures concerning the characterization of « . It may be

conjectured that the angle of rotation for which the range of the derivative

ata
LTI N R [ [T o &2 ey s e W E e iy
minimum should be o« . Howeves , Liii8 Is Not true
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for 4/x, It may also be conjectured that the angle for which the modulus



of continuity is least should be a*. This is also contradicted by the #/x
function,
5.5 CONVEX FUNCTIONS OF nth DEGREE

It is easy to see that if f'"(x) > 0, x €(0, 1), then the B.A. straight
line must have critical points at the end of the interval., A general
result of this type is also true; i.e,, if f(n)(x) >0, x€(0,1), then the
B.A. polynomial of degree n-1 has critical points at the end of the
interval, It is also true that if f(n)(x) >0, x€(0,1), then there must
exist exactly nt+l critical points at a B, A, Let us denote the nth
derivative of an ¢-rotation of f at t in the x,y coordinate system as
£7)(t). From the above discussion it follows that if 2 B.R.A. has ni2
critical points when o/,* €R, then f:::) (x) F Q, x €(0,1).

The first four derivatives of an @-rotated curve are as follows:

; ¥ 1 vy ~sing + f'(t)cos ¢
fa'(t) = yl(t)/xa(t) =

a X&(t)
(5. 6)
e f”'t()t))z
=9
o
By - {Mtcosa +(EME)EE) - 2(£7(1)%)sina
A (! (£)°

£ (tycos?a + (#Hi0)re) - 6£7(L)E1(t))sin o cos o

f((:})(t) = + (f(4)(t)(f'(t))2 e 6{'(t')f”(.t)f”’((:) N 6(f,,(t))5)s-1nz(y

-1 ({ ‘1
(3 (6))

The denominator x('v(t:) is always positive or negative for o
belonging to the interior of R. The numerator of fs)(t), for f(x) = x3

s g g " ; ;
is: 6coso - 54x"sina, which clearly changes sign for appropriate g,

x €(0,1),



In a sense, the fact that the nth derivative of a function is a
constant sign inhibits its "approximability" by limiting the number of
extrema of the error function and hence the number of times the
approximation can wind around the function, By introducing the rotation
parameter ¢ and searching for a B.R. A, we are, in effect, attempting
to remove the limitation on the number of possible extrema of the

error function,



TABLE 5,1

Function Quadratic approximétion Cubic approximation
x€[0,1] minimax - #c.p. minimax & #c.p.
errYor o erFoT o
% 06345 " .00781
.01114 4130 5 .00169 . 0647
i . 00648 . 8679
> .03125 0
.00535 2782 5
sin2x .02192 .00418
.00823 1279 5 .00533  -,268
g .000321  .088
e” . 000875 - . 000543
.000250 .2864 5 .0000146 0817
.0000251 .62
" . 12237 .01501
.00645 = .0818 5 .000871  .0229
., 03441 1,13 4 00138 L1957 6
xe .00818 . 000706
.000659 .6144 5  .0000414 .08
~,000187 _ .970 6
xhg B . 02607 . 00201
.02405 .40 4 . 00109 .34 5
Y AR t) . 00170
.01092 .25 4 .000974 -.588 6
¥ .. 01787 . 000658 '
o OATSE  — Bih 4 000377 -, 044 6
e E . 00617 . 00452 A
.00481 -, 0750 5 .0008%2 448 6
., 00285  -.433
e x+1) .00123 . 000545
. 000546 -.1484 5 .000537  -.076 5
X% /(x+1) . 01280 00664

. 00584 . 0873 5 . 00584 .09 5




Function

Quadratic

TABLE 5,2

Quadratic

Cubic

HooMX

x¢€]0,1] minimaxerror B.R.A, error minimaxerror
x .03125 . 00538 .0 2782
x4 . 06345 .01114 . 00781 . 4130
¥ .09216 . 01647 .01971 .4922
6 L 11704 L 02121 . 03326 . 5438
e™ .000875 . 000250 . 000543 .2864
e . 12237 , 00645 .01501 . 0818
" . 74832 . 05547 . 13494 . 0288
e ¥ 3.32688 . 30375 . 77822 . 0108
e .00322° .000111 000198 -. 6757
& 01656 . 00102 ,00203 .. 5445
g . 03726 , 00319 L 00672 -. 5246
o5 .05894 .00154 ,01268 .2223
xe .00818 . 000659 .000706 L6144
= ,02607 . 02405 ,00201 , 40
e .01128 . 01092 ,00170 .25
e .01787 L 01753 .000658 -.216
sinzx . 02192 . 00823 .00418 -.1279
= At nl) 00123 . 000546 .000545 -. 1484
o i} 01280 . 00584 . 00664 . 0873
xe .00617 . 00481 .00452 -. 0750
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CHAPTER VI
BEST ROTATED STRAIGHT LINE APPROXIMATION S

6.1 NECESSARY CONDITION.S FOR BE%T ROTATED STRAIGHT LINE
APPROXIMATIONS

The principal simplification which results from considering
straight line approximations is that the g-rotation of a straight line is a
straight line., Hence a best approximating straight line for an @-rotation
of 1 is an admissible approximation of an a'-rotation of f, The following
equations relate the slope and intercept of an @-rotated straight line

cx+d to the slope and intercept of the same straight line without rotation:

c = (acosw - sing)/(asina + cosa)
d = b/(asing + cosa)
(6.1)
a = (sing + ccosa)/(cosa - csing)
Bs d/(cosa - csing) .

Hence we can describe the g-rotation of any sti’aight line with the
parameters a, b and o,

Definition 6. 1: F(a,b,q) is the uniform error of approximation of
an -rotation of the straight line ax+b for an @-rotation of f, F(a*,b>:<,(g)
is the mir,li-max error for an g-rotation of f and F(ar::,b;":,o;*) is the error
of the best rotated approximation,

ot %

. 43 b 4 > : % %, z K
Theorem b.2: Fla ,b ,a } = Filane ,b ,o hile., c =0ata

B.RoA,
Proof: If the slope of the best approximating line is not zero,

then by rigidly rotating f and the approximating line an angle o' so that

the slope of the strai ight line is now zero, the error of approximation at

X

T 4+ af the curve
eachn r int QL G508 Y i 4 R

bt

] vy P s s i)Y vaal A . (Y MO S A vl 1 Gl
=8 t}u\/ PEi ll‘\,»]}.L‘!J\..- uLar \}llbtctll\,\i iroin the curve to

the straight line in the original a-rotation. ‘Hence the error of
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. O3

approximation at o' is less than at «. If c T3S a =tang .

Corollary 6.3: If straight line B.A. is non-unique at (B then

o Fa .
Proof; H BoA, at oy is non-unique, then there exists a straddle

point extremum and hence a B. A, such that cﬂi # 0.

" Definition 6.4: G(k, B) is the uniform error of a constant approxima-

sl 5
L

tion for a B-rotation of f. G(k , B ) < G(k, B) for all k, B.

? : ; ; 7 4
% % B P &

Corollary 6.5: F(a',b,a') = Gk ,B ), and o = B, k =4,

Theorem 6,6: A necessary condition that a constant approxima-

tion be a B. R, A, is that the error function ea’(t) has three extrema
with characterization according to theorem 3,13 or a straddle point in
xa(t}.
Theorem 6,7: A necessary condition for a best rotated straight
line approximation is that the straight line is @ B, A, and that 2" = tano .
An application of theorem 6.2 is the following: Let f(x) = x", (Fig. 6.1)
x€[0,1], n =2 2., Under the assumption that oz* €R, the best approxima-

ting straight line must be a constant with three alternation points,

Therefore it follows that the orientation of y(y*(t) is Fig, 6, 2.

Y| b3
/ £ RS SR P A
s ';f’ ¢
= 4 ’N""'“wn--.-h,.“.ww"""‘“"‘ d .
/"/
64. et 4 S e .._..V..‘-.‘f e X
Fig. 6.1 Fig. 6.2
Thus for all n, o = 45°, a = 1, d = -¢, and from (6.1) Koo w2 g,

Here € depends on n, and € — J2/4 as n= =,
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6.2 ROTATION INVARIANCE OF BEST APPROXIMATING STRAIGHT
LINES

For straight line approximation we can ask whether there exists
any relation between best approximations for different rotations of f,

Definition 6.8: Let a:':x + b='< be a B.A. for a fixed rotation of f,

If for some range T of a,

st P03
b

F(a ,b ,0), a€T

is the error of best approximation, then we say that a'x+b is

rotation invariant for o ¢ T,

then the

Theorem 6.9: If f is continuous on [0,1], 'GZ = Pl’

B.A. tof, 2 ' x + b , is rotation invariant for o € R.

Proof: For straight line approximation, the error function is
e (t) = y (t) - ex_(t) - d. (6.2)

From equation (6, 1), we can put (6.2) in the form

~ f(t)-at-b
ecz(t) T asinwg + cosa

(6.3)

Let t t, be the critical point sel belonging to [0, 1] for the B. A,

3 K5ets

a't+b to f (without rctation). By definition t <t2< t3,and for

1
o €R, xa(ti) forms a critical point set for (6.2).
It is interesting to note that the proof of theorgzn 6.9 will not
work for ¢ £ R, since Xa(ti) is not necessarily a critical point set, for

these rotations,
Theorem 6.10: If o £ R, straight line.approxilﬂations for

continuous functions are not necessarily rotation invariant,

Proof: From Fig, 4.1 and 2,2, the result follows,



The result, theorem 6.9, makes it a particularly simple matter to

compute the best rotated straight line approximation if we know that

e
brs

oo €R., Given the B, A. for f without rotation, af‘: £ tan 13,

o
R
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CHAPTER VII
EXTENSION OF SOME RESULTS OF TORNHEIM
Tornheim (1950) gave the following definitions:
Definition 7.1: A class of functions Cn is said to be convex with
" respect to a unisolvent class Gn of degree n on [a,b], if { ECn is
continuous on [a,b] and has at most n intersections with any member
g€ Gn'

Definition 7.2: A graze point is a point of intersection of g(x)

with f(x) such that f(x)-g(x) does not change sign in a suitably small
neighborhood of the intersection,

Tornheim then proved that if f €Cn on [a,b], and if g EGn, a
unisolvent class on [a,b], then f(x)-g(x) has no graze points, under
the condition that f has n intersections with g or n-1 intersections
with g such that the intersections do not occur at a or b and such that

n+l

sign(f{a)-g(a)) = (-1) sign(f(b)-g(b)) is verified.

These results directly relate to the form of the error function

at a minimax approximation since g (x) necessarily has n intersections

with £, ~Therefore, if f¢ Cn’ e (x) has no graze points,
The coraputer results of chapter V has motivated us to consider
the form of the error function at 2 best rotated approximation, In this

case, { must be allowed nt+l intersections with members of Gn'

Definition 7.3: fe¢ Cr 1 with respect to a unisolvent class Gn of

5
degree n on [a,b], if f is continuous cn [a,b] and f has at most
n+l intersections with any member g GGn, x€f{a,b].

In the theorems which follow we will show that the results of

Tornheim do generalize to Cn classes of functions, We also note

+1



that both theorems will be of use in characterizing the form of the error

function at a B.R.A., where, it is assumed, cv_q‘eR, and f ¢ Cn+1'

Theorem 7.4: If feC

and has n+t+l intersections with geG_,
ntl n

a unisolvent class of degree n on [a,b], then f does not graze g
anywhere, x € (a,b).
Proof: Following Tornheim, we shall prove the theorem for n=1

and then reduce the general case to this one. Let x4 and x, be the

two points of intersection, belonging to (a,b). Case A: Xy and x, are

both graze points., Case B: Only %y is a graze point.

Case A: €]

e £ l,.f""”g

S S

.‘_........,._Q e 5 Al e e e 1

1zxzb

We define g1 8y 83 € Gn such that gl(a) = fal, gz(b) = f{b) and

1 2

we will assume f-g 2 0, and is therefore zero only at %) and X, Hence

gi>~ g, for all g5 We will not consider the cases gl> g, and g2> g

g3(z) = f(z), where x,<z <x,. Since f-g does not change sign on [a,b],

distinct and shall assume g2> g, We will assume that all the gi's are

distinct. Hence, there are three distinct cases which we must consider:
1 >g. > >g; 2)eg.>g.>g.>2g; 3)g.,2g.>g,7g. We note that for
) 8378,78,78 2)8,78378,78 3)g,78,78378. W 2

a unisclvent class of degree one, if two members of the class intersect,

they are equal over the whole interval,

If g, is not a graze pocint, we are immediately led to a contradic-
£y

tion. Hence we shall assume g, is at a graze point at z,
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A & ) ‘< / /

Case Al is impossible since g, must be below g3 and above g
without intersecting either, which implies g, must intersect £ more
than once more. Cases A2 and A3 follow similarly.

For cases Al, A2, and A3, the gi's were assumed distinct,

Ad: g, ° 8, R7

Under the Case A4 assumptions, therle can be no other intersection
of g with f. Hence gl—f> 0, x€(a,b)., If g3> g1 the contradiction is

immedizate, If g1>g then g3 is below g, and above g which implies

3.-

it intersects f more than once more,

A5 g, = 83 (same as gy = 33) L?\ /

S S

Under the Case A5 .as sumptions, if gz> gy then gy must have
more than one more intersection with f, It gl> g5 then g, must have
more than one more intersection with f.

Finally, €178, 8, is iznpossi‘ble since g4 then has three inter-

sections with f.



€1
Case B: S R i
cssemimalpmsion o sevmsen el e ST SN
a x]

The functions gl, g3 € G1 are assumed distinct and defined as in
Case A, If g3>g1, then g3 must have more than two intersections with
f since g,” 8. Hence, we assume g1> g3- Under this assumption g3
must have an intersection with f to the left of z (and hence z'is a graze
point). Since g3 and g are distinct, they cannot intersect anywhere on
[a,b] and in particular at a. We define g, € G1 such that g(a)<g3(a)_
But this implies g, has three or more intersections with f, and there-
for a contradiction,

If g,=85, We construct g, in the previous manner and again
reach a contradiction. This finishes the cases for n=1,

We next consider the general case. Suppose f grazes g at Xy

Let [a',b'] be a closed interval with x., in its interior and containing

1
abscissas of none of the other n points of intersection, If we take only
those functions g of Gn, which pass through the other n-1 points of
intersection and restrict them to [a',b'], we obtain a unisolvent class
of degree one, G', in which f restricted to [a',b'] is a C, function .8
But then f' cannot graze any function of G', hence f does not graze g
at b

Corollary 7.5: If f¢ Cn and has n intersections with a g EGn
\

but nct at x=a or b, and if sign({(a)-g(a)) = (-1) sign(f(b)-g(b)) then g

and f intersect exactly n tirmes,
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Proof: There could be at most one mozre intersection and if this

occurred f-g would change sign at each intersection according to

n+l

theorem 7,4 so that sign{f(a)-g{a)) = (-1) sign{f(b)-g(b)). This is a

contradiction to the hypothesis of the corollary,
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