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The Markowitz Optimization Enigmia:
Is ‘ﬂptimlzed' ﬂptlmal?

The indifference of many investment practitioners to mean-variance optimization technolo-
gy, despite its theoretical appeal, is understandable in many cases. The major problem with
MV optimization is its tendency to maximize the effects of errors in the input assumptions.
Unconstrained MV optimization can yield results that are inferior to those of simple equal-

weighting schemes.

Nevertheless, MV optimization is superior to many ad hoc techniques in terms of
integration of portfolio objectives with client constraints and efficient use of information. Its
practical value may be enhanced by the sophisticated adjustment of inputs and the imposition
of constraints based on fundamental investment considerations and the importance of priors.
The operating principle should be that, to the extent that reliable information is available, it
should be included as part of the definition of the optimization procedure.

HE MARKOWITZ MEAN-variance (MV)
efficient frontier is the standard theoreti-
cal model of normative investment be-
havior.! Most modern finance textbooks consid-
er mean-variance efficiency the method of
choice for optimal portfolio construction and
asset allocation and as a means for rationalizing
the value of diversification. The Markowitz effi-
cient frontier has also provided the basis for
many important advances in positive financial
economics, including the Sharpe-Lintner Capi-
tal Asset Pricing Model (CAPM) and recognition
of the fundamental dichotomy between system-
atic and diversifiable risk.

Given the success of the efficient frontier as a
conceptual framework, and the availability for
nearly 30 years of a procedure for computing
efficient portfolios, it remains one of the out-
standing puzzles of modern finance that MV
optimization has yet to meet with widespread
acceptance by the investment community, par-
ticularly .as a practical tool for active equity

1. Footnotes appear at end of article.
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investment management Does thlS "Markowitz
optimization enigma” reflect “a ‘considered
judgment [by the investment community] that
such methods are not worthwhile,” or is it

“merely another case of deep-seated resistance
to change.”” The enigma is not easily dismissed
by targetmcr the inadequate training in contem-
porary finance and mathematics of many prac-
ticing investment professionals. There are sim-
plified MV-optimization procedures that are
neither mathemahcally cumbersome nor anti-
intuitive.* )

This article demonstrates that the enigma can
be rationalized in many instances. The tradi-
tional MV procedure often leads to financially
irrelevant or false ““optimal” portfolios and asset
allocations. In fact, equal weighting can be
shown to be superior to MV optimization in
some cases.” However, new techniques address
some of the limitations of traditional MV opti-
mizers, improving the pracncal investment val-
e of portfolio optimization.®

Classical Markowitz MV Optimization

Classical MV optimization assumes that the
investor prefers a portfolio of securities that
offers maximum expected return for some given
level of risk (as measured by the variance of
return). Given estimated means, standard devi-
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ations and correlations of return for N securi-
ties, the MV-optimization procedure selects the
proportions of investable wealth to devote to
each security. The resulting set of prescribed
portfolio weights (X; through X,) describe opti-
mal solutions. (See the appendix for a. mathe-
matical formulation.) ‘

The set of optimal portfolios for all possible
levels of portfolio risk defines the MV efficient
frontier. Figure A illustrates the classical MV
efficient frontier in terms of the mean-varjance
of total return. Except for the names attached to
the securities, the problems of equity portfolio
optimization and asset allocation are equivalent
in this framework. Figure B illustrates the effi-
cient frontier in terms of the mean-variance of
residual return, or “alpha’; in the case of equity
portfolio optimization, alpha is usually defined
as return in excess of the rate of return associat-
ed with the security’s assumed systematic risk.”

The optimal portfolio for any particular investor -

is the portfolio on the efficient frontier that is
tanigent to the “utility curve” that defines that
investor’s relative risk aversion.

" In many cases of practical interest, the effi-
cient frontier is defined subject to a budget
constraint (sum of the proportions of invested
wealth equal to one) and no short-selling (non-
negative proportions of invested wealth). Other

Expected Residual Return

@
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linear constraints, including trading costs, may
be imposed. Computing the MV efficient fron-
tier requires (parametric) quadratic program-
ming. '

Benefits of MV Optimizers

This article focuses on the limitations of MV
optimizers, but it is important to keep in mind
some of the significant potential benefits of the
technology. These are outlined below.

® Satisfaction of client objectives and constraints:
Portfolio optimizers provide a convenient
framework for integrating a wide variety of
simple but important client constraints and
objectives with portfolio structure.

@ Control of portfolio risk exposure: Portfolio
optimizers can be used to control the port-
folio’s exposure to various components of
risk. -

e Implementation of style objectives and market
outlook: An organization’s investment style,
philosophy and market outlook may be
reflected within the MV framework by
choice of the appropriate exposure to vari-
ous risk factors, the stock universe of inter-
est and the performance benchmark.

@ Efficient use of investment information: Opti-
mizers are designed to use information op-
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timally in a total portfolio context, while ad
hoc weighting can be counterproductive
with respect to available information.®

e Timely portfolio changes: Portfolio optimizers
can process large amounts of information
quickly, a particularly important benefit for
a large institution, which needs to deter-
mine the impact of new information on all
its portfolios quickly and conveniently.

Simple Reasons for Not Using MV

Optimizers

Against these benefits of MV optimization
there are arrayed some simple (though not
necessarily robust) reasons for not using optimi-
zation. Optimizers make conceptual demands
on portfolio managers. As products of modern
finance, portfolio optimizers may seem difficult
to use because investment managers are used to
a more informal tradition of investment man-
agement. Optimization depends, explicitly or
implicitly, on specification of an appropriate
benchmark or normal portfolio, which may re-
flect a manager’s investment style, philosophy
or outlook. Consequently, information is re-
flected, not by the exclusion or inclusion of
securities in the portfolio, but by the extent to
which portfolio weights deviate from normal or
benchmark weights. i

Probably the single most important reason
why many financial institutions don’t use port-
folio optimizers is political. This is because the
effective use of an optimizer mandates signifi-
cant changes in the structure of the organization
and the management of the investment process.
In many investment organizations the invest-
ment policy committee, which often consists of
the senior officer(s) of the firm, makes the key
investment decisions. An optimizer may tend to
usurp many of the integrative functions of the
committee.

Introduction of an optimizer will also tend to
encourage the development of a more quantita-
tive investment process, which may involve
unwelcome adjustments. For one thing, it will
increase significantly the level of accountability,
communication and risk-sharing within the or-
ganization. This is because quantitative valua-
tion models require that input forecasts be stat-
ed explicitly, while the valuation process itself
provides return estimates that are unambiguous
descriptions of value. For another, control of the
optimization algorithm requires a working
knowledge of basic statistical concepts and

modern portfolio theory. As the ability to un-
derstand the financial meaning of the statistical
characteristics of a portfolio becomes critical,
quantitatively-oriented specialists inevitably as-
sume a central role in the investment process. It
is therefore not very surprising that traditional
managers of large financial institutions are not
eager to relinquish their positions of power and
influence by allowing an optimizer and a quan-
titative specialist to usurp key roles in the in-
vestment process.

Organizational politics or inexperience with
modern financial technology cannot fully ex-
plain the Markowitz optimization enigma. If
MV optimizers added value, new investment
management firms, organized and staffed to
manage and leverage the technology, would
eventually displace more traditional firms.

It is known anecdotally that a number of
experienced investment professionals have ex-
perimented with MV optimizers only to aban-
don the effort when they found their MV-
optimized portfolios to be unintuitive and
without obvious investment value. As a practi-
cal matter, even absent the influence of organi-
zational politics, the optimized portfolios were
often found to be unmarketable either internally

or externally.

Some Fundamental Limitations

The key operative issue in regard to MV opti-
mizers can be stated simply, in terms of two
alternative hypotheses:

(1) MV-optimized portfolios are better, even
though they are difficult to understand.

(2) MV-optimized portfolios are difficult to
understand because they don’t make in-
vestment sense and don’t have invest-
ment value.

This article argues that the unintuitive character
of MV-optimized portfolios is often symptomat-
ic of the absence of significant investment value.
MV optimizers have serious financial deficien-
cies, which will often lead to financially mean-
ingless “‘optimal” portfolios.

Error Maximization

The unintuitive character of many “opti-
mized” portfolios can be traced to the fact that
MV optimizers are, in a fundamental sense,
“estimation-error maximizers.” Risk and return
estimates are inevitably subject to estimation
error. MV optimization significantly over-
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Source: Data from J.D. Jobson and B. Korkie “Putting Markowitz
Theory to Work,” Journal of Portfolio Management, Summer 1981.

weights (underweights) those securities that
have large (small) estimated returns, negative
(positive) correlations and small (large) vari-
ances. These securities are, of course, the ones
most likely to have large estimation errors.

Jobson and Korkie have quantified the magni-
tude of the error-maximization characteristics of
MV optimizers in certain cases.’ Using a known
multivariate distribution of monthly returns for
20 stocks, they found the “optimal” portfolio,
defined as that portfolio on the efficient frontier
with the maximum Sharpe ratio (excess return
divided by the standard deviation). Then, using
Monte Carlo simulations, they estimated ex-
pected returns, variances and covariances for
the 20 stocks over a 60-month period and com-
puted the “optimal” portfolio for each set of
estimates. Finally, they compared the true
Sharpe ratios of (1) the average of the simulated
optimal portfolios; (2) the optimal portfolio de-
rived from the known multivariate distribution;
and (3) an equally weighted portfolio of the 20
stocks. The true Sharpe ratios were, respective-
ly, 0.08, 0.34 and 0.27! Their results, illustrated
in Figure C, dramatically confirm the error-
maximization hypothesis.

One caveat should be noted for accurate inter-
pretation of the Jobson-Korkie results: The com-
puted optimal portfolios did not include a short-
selling constraint. Including this condition
would have reduced the magnitude of the dif-

ferences across the Sharpe ratios of the three
portfolios. Furthermore, most financial institu-
tions do have short-selling constraints. The Job-
son-Korkie conclusions thus need to be moder-
ated, although they are not invalidated, when
applied to a realistic investment management
setting.'® These results also strongly confirm the
importance of imposing financially meaningful
constraints, when they are available, on the
MV-optimization procedure.

A practical and general consequence of the
error-maximization process is that any estimates
of the statistical characteristics of optimized
portfolios, if those characteristics are part of the
optimization objective function, may be signifi-
cantly biased. The measure of diversifiable risk
produced by the optimizer, for example, is
likely to be a significant underestimate of the
optimal portfolio’s true level of risk.

Good and Bad Estimators

An important contributor to the error-maxi-
mizing character of MV optimization when us-
ing historical data is that the usual estimation
procedure—which replaces expected returns
with their sample means—is (generally) not
optimal.

An estimator is “admissible” if there exists no
other estimator that dominates it for a given risk
or loss function.!! Stein has shown that, under
standard conditions, sample means are not an
admissible estimator of expected returns.'? Intu-
itively, sample means are suboptimal because
they ignore the inherent multivariate nature of
the problem. More powerful statistical estima-
tion techniques are required.

Missing Factors and Non-Financial

Structure )

MV optimization often ignores factors that are
fundamentally important investment manage-
ment considerations. One of the most important
of these factors is liquidity, or the percentage of
a company’s market capitalization represented
by portfolio holdings.

A portfolio of a large bank trust department
or a portfolio of small-cap stocks, for example,
may hold a significant percentage of a security’s
market capitalization. A 1 per cent change in the
portfolio may thus represent a very substantial
amount of the total value of the firm. As the
proportion of the total value of the company
purchased (sold) by the portfolio becomes sig-
nificant, the purchase (sale) price is likely to rise
(fall).
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Figure D illustrates the impact of liquidity on
the set of efficient portfolios. Compared with
the traditional (unconstrained) MV frontier, im-
position of a liquidity constraint results in less
return enhancement and/or less risk reduction.
In an extreme case, for very large capitalization
portfolios, the MV frontier may be close to the
original, “unoptimized,” portfolio.

Liquidity considerations suggest some impor-
tant principles for valid portfolio optimization.
(1) For a large financial institution, the “true”
optimal portfolio may not differ substantially
from its current portfolio. (2) Large financial
institutions must necessarily use care in revising
their portfolios. (3) An optimal portfolio is in-
herently position-dependent, even when tradi-
tional transaction costs are ignored.

Mismatched Levels of Information

Optimizers do not differentiate between lev-
els of uncertainty associated with the inputs.
This problem is not confined to the difference in
uncertainty between return and risk estimates;
there are also significant differences across the
levels of uncertainty associated with input esti-
mates for various classes of stocks, such as
utilities versus growth stocks.

A related problem is that, in many cases,
differences in estimated means may not be
statistically significant. In such cases, the pri-
mary value of MV analysis may be to reduce
portfolio risk. "

Unstable Optimal Solutions

In some cases, MV optimizations are highly
unstable; that is, small changes in the input
assumptions can lead to large changes in the
solutions. One important reason for this behav-
ior is ill-conditioning of the covariance matrix.
MV optimization requires the inversion of a
covariance matrix; an ill-conditioned matrix will
generally result in unstable solutions. Input
assumptions that do not reflect financially
meaningful estimates or the use of parameter
estimates based on insufficient historical data
are often associated with ill-conditioning and
instability. '

Non-Uniqueness

Optimizers, in general, produce a unique
“optimal” portfolio for a given level of risk. This
appearance of exactness is highly misleading,
however. The uniqueness of the solution de-
pends on the erroneous assumption that the
inputs are without statistical estimation error.

As Figure Eillustrates, given any point on the
true MV efficient frontier, there is a neighbor-
hood of the point (illustrated by the shaded area
on and below the frontier) that includes an
infinite number of statistically equivalent port-
folios.'* These “’optimally equivalent” portfolios
may have significantly, even radically, different

Statistically Equivalent
MV Efficient Portfolios

Figure E
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portfolio structures. In effect, this means that
optimal portfolio structure is fundamentally not
well defined.

Exact vs. Approximate MV Optimizers
A variety of commercially available optimization
algorithms are marketed as MV optimizers. "’
Some provide “exact” (quadratic program-
ming), others “approximate” optimal solutions.
The difference determines such characteristics
as (a) processing time; (b) entire frontier vs.
single-point solution; (c) maximum size of the
optimization universe; and (d) the ability to
operate on standard personal computers.

Quadratic (parametric) programming, a gen-
eralization of linear programming, can solve for
the entire MV (or alpha-diversifiable risk) effi-
cient frontier. The primary limitations of the
procedure are a relatively small universe size
and/or relatively long computational time. Al-
though the algorithm can include transaction
costs, they have often been ignored. Enhance-
ments of the traditional algorithm, which allow
for the solution of relatively large-scale optimi-
zation problems in the presence of factor models
of risk, are available.!®

Approximate MV optimizers are able to solve
optimizations for “institutional-size” portfolios
and generally include transaction costs and op-
tions to optimize other factors. Their important

limitation is that they provide a single “opt
mal” portfolio that is “near” the MV efficier
frontier. As Figure F shows, this procedur
finds a succession of “more optimal” portfolio
at each iteration, ceasing the search when
portfolio within a specified tolerance is found.

Some practitioners have claimed that MV
optimal portfolios derived from approximat
optimizers don't seem particularly unintuitive
Do the characteristics of approximate and exac
optimizers differ? Are approximate optimizer
“better’” in some fundamental, practical sense
Or are they only better at hiding the limitation
of MV optimization? If both procedures solv:
for the same objective function under the sam
constraints, the results should be identical
Some reasons for any observed differences ar
discussed below.

Inadequate Approximation Power

Approximate MV-optimal portfolios, becaust
they are approximations, reflect less of the infor
mation in the input estimates, including the
effects of error maximization, than exact opti
mizers.

This, problem may be particularly acute fo
many PC-based optimization programs. Ofte
used for asset allocation studies, PC optimiza
tion programs can reflect their lack of approxi
mation power by a remarkable lack of instabilit
in their solutions. Very different input assump
tions have led to similar “optimal’” allocations. "

Default Settings of the Parameters

Approximate optimizers solve for a single
optimal portfolio near the MV efficient frontier
To single out an optimal portfolio, they mus
assume some value for the “target” paramete
in the objective function. Risk-aversion or suit
ability parameters may have been set to targe
the more “explainable” parts of the MV frontier
At the maximum-return end of the efficien:
frontier, an MV-optimized portfolio has a very
easily definable structure—maximize return (o1
alpha) and ignore risk.

Approximate MV optlmlzers are convement
But the benefit of convenience should be
weighed against the additional and unpredict-
able level of error they impose on the optimiza-
tion process. Except in cases where it is com-
putationally infeasible, parametric quadratic
programming remains the algorithm of choice.

FINANCIAL ANALYSTS JOURNAL / JANUARY-FEBRUARY 1989 [J 36



Enhancing MV Optimization

Procedures for enhancing MV optimization
share important similarities. They are often
Bayesian in character and depend on the exis-
tence of a prior, either for adjustment of the
inputs or as a constraint on the optimization.

Asset Allocation With Respect to a

Benchmark

While it is common institutional practice to
define equity portfolio optimization in terms of
a benchmark such as a market index, it is
infrequent in asset allocation studies. Yet in
many cases MV efficiency is properly defined in
terms of performance with respect to an index
or a liability. (In the context of a liability bench-
mark, the problem is sometimes called “sur-
plus” management.)

The MV-optimization procedure for funding a
liability is called “benchmark asset allocation.”'®
Liability changes represent the prior for judging
the benefits of returns associated with an asset
allocation in a given period. The optimization’s
input parameters are redefined to reflect residu-
al returns with respect to the benchmark.

Introducing a benchmark can significantly
alter the characteristics of MV-optimal asset
allocations. In general, benchmark asset alloca-
tion is strongly dependent on the economic
characteristics of the liabilities. It is consequent-
ly far less time-period dependent or unstable
and appears to have substantially more practical
investment value.

Bayes-Stein Shrinkage Estimators

Bayes-Stein estimators constitute an impor-
tant class of admissible estimators of expected
returns when historical data are used. Observed
sample means for individual assets are
“shrunk” to some global mean. The global
mean may represent the pooled mean, a Bayes-
jan prior or the mean of the minimum-variance
efficient-frontier portfolio. In many cases, the
greater the variability in the historical data, the
greater the shrinkage of sample means to the
global mean.'? Tests of Bayes-Stein estimation
have shown that it can improve traditional MV
optimization significantly.*®

For a given utility function, Bayes-Stein esti-
mation generally changes the MV-optimal port-
folio, shrinking the recommended optimal mix
in the direction of the minimum-variance effi-
cient portfolio.?! The amount of shrinkage of the
input estimates generally increases as the num-

ber of asset classes increases and the number of
time periods decreases. Bayes-Stein estimators
represent an important emerging technology
with significant potential for improving the
practicality of MV optimization.

The IC Adjustment

In many cases, financial institutions use stock
valuation models, rather than historical returns,
to estimate the “returns” input to an optimizer.
Such “estimates” generally take the form of
relative valuations, rankings or simple ordinal
assignments.

The optimizer requires a ratio-scale estimate
of return or alpha for each security so that the
return and risk input estimates, usually derived
from historical data, are on comparable scales.
Ambachtsheer provides an “IC adjustment”
that can be used to convert rank or ordinal
valuations into inputs for optimization.” The
appendix describes a generalization of this proc-
ess.

The IC adjustment converts forecasts to a
scale that represents the average return associ-
ated with the forecast. The ““adjusted” returns
are then on a scale comparable to the risk
estimates and other constraints used in the
optimization, such as transaction costs. The IC
adjustment may operate as a shrinkage operator
formally similar to a Bayes-Stein estimator.

While widely used, the procedure is often not
well understood. Although the sole purpose of
the IC adjustment is to convert forecast returns
onto an economically meaningful scale, it is
frequently employed as an ad hoc method for
controlling the optimization results by adjusting
the magnitude of input alphas. The IC adjust-
ment as used in practice is thus often fallacious.
In particular, as the example in the appendix
shows, correct IC adjustment may not even
change the size of an alpha derived from a
traditional dividend discount model under com-
mon assumptions.

Alternatives to MV Optimization
The non-uniqueness of MV-optimal portfolios
has important implications for active equity
managers. Most importantly, the inherent am-
biguity of optimal portfolio structure provides a
rationale for choosing from among statistically
equivalent optimal portfolios that portfolio most
consistent with priors of financial relevance,
understandability and marketability.
Understandability and financial meaning are
fundamentally important practical consider-
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ations in defining valid portfolio construction
criteria. Valid financial considerations, not the
rigid application of a computer program, should
dominate the portfolio construction process.

The Linear Programming Alternative

The non-uniqueness principle allows consid-
eration of linear programming as an alternative
optimization technology. Linear programming
has been successfully used by a number of
organizations to optimize fixed income portfo-
lios for a wide range of purposes. It is also an
integral part of the investment process of some
active equity managers.>

For equity optimization, linear programming
provides a tool for designing portfolios with
maximum (excess) return with specified finan-
cial characteristics, such as specific values or
ranges of beta or yield. Simple techniques,
which in many cases imitate the activities of
active managers, can be used to control the
overall level of diversification and extra-market
risk in the portfolio. Other constraints can be
imposed to take transaction costs and liquidity
into account. The end result is an “optimized”
portfolio with well-defined risk characteristics
and readily understandable structure that
avoids important errors associated with the
overuse of information in statistical estimates.

Linear programming does not eliminate the
problem of error maximization, although the
errors may be easier to understand and correct.
This is because the error-maximization process
itself is linear, not quadratic; high or low con-
centrations in a stock or sector can easily be
traced to large or small estimates of return.

“Optimal” portfolios based on linear pro-
gramming may be criticized because they are
not mean-variance efficient and are therefore
subject to the possible misuse of valid forecast
information.”* But such theoretical criticisms
have little practical relevance if the “optimal”
portfolio structure cannot be unambiguously
defined in the context of the statistical limita-
tions of the input data. At the current state of
technology, an enhanced linear programming
algorithm, carefully defined and controlled,
may be useful in providing a practical balance of
limitations and benefits, especially for active
equity management.

Ultimately, the benefits of equity optimiza-
tion based on linear programming technology
must be judged relative to the benefits that can
be provided by carefully defined, input-adjust-

ed, MV optimization. This is still an open issue.
In many cases, however, the problems of error
maximization that most limit the practical value
of MV optimization seem largely attributable to
estimate errors in the return, rather than the
risk, dimension. This suggests that the value of
linear programming technology for practical in-
vestment management may ultimately be limit-
ed.

Testing for Mean-Variance Efficiency

An important alternative to MV optimization
is to test for the MV efficiency of a given
portfolio.”” Figure G illustrates the procedure.
The portfolio to be tested is represented by a
point below the efficient frontier. The test deter-
mines whether or not the given portfolio lies
within a confidence region of portfolios that are
statistically equivalent to points on the MV
frontier. . The confidence region increases as
expected return increases, reflecting the as-
sumed lower accuracy of the estimates of ex-
pected return versus risk.*®

Such a procedure, at least conceptually, is
very attractive. Assuming that the investor or
‘institution considers the portfolio to be tested as
“optimal,” the portfolio represents a revealed
preference about the appropriate level of risk.
The issue of which utility function to use to
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define a point on the efficient frontier may thus
not be material.

There are two substantive problems with the
approach. First, the tests have little power; the
null hypothesis—MV efficiency—will often not
be rejected when it is false. Second, current
tests are inappropriate for many problems of
practical interest; the MV efficient frontier is
unconstrained, including allowance for short
sales. As a practical matter, available tests have
limited value as indicators of whether a given
portfolio is “far” from the (unconstrained) MV
efficient frontier.

Specialized Applications of MV
Optimization

The substantial limitations of MV optimization
when applied to the general problem of optimal
portfolio construction have been noted above.
Some important specialized applications are dis-
cussed below.

Index or Tracking Funds

MV optimizers may be used to structure “in-
dex” or “tracking” funds for equity manage-
ment. The objective is to structure from a pre-
scribed set of securities a portfolio whose
performance will be similar (within a specified
tolerance) to that of a given index. The optimi-
zation is defined by setting the return inputs
equal to zero and imposing few, if any, con-
straints on the solution. In this case, the MV
efficient frontier reduces to a single point—the
portfolio with minimum tracking error or resid-
ual variance.

Most of the problems normally associated
with MV optimizers are eliminated, or greatly
reduced, when MV optimization is applied to
indexing. There is no error maximization result-
ing from errors in the return estimates. No
errors are created by mismatches in the levels of
uncertainty in the return versus risk estimates.
Because the exact structure of the optimal solu-
tion is not the focus of the analysis, neither non-
uniqueness nor unintuitiveness is an important
consideration. The basic remaining source of
error is the adequacy of the risk model. If the
index is standard, MV optimization may pro-
vide a useful procedure for defining tracking
funds. Error maximization may be exhibited
primarily in terms of downward-biased esti-
mates of the tracking error.

Nevertheless, two of the most widely used

procedures for index fund management—repli-
cation and stratified sampling—do not require
MV-optimization technology.”” Replication
funds index-weight the stocks in an index fund,
with minimal restrictions. Stratified-sampling
funds include a small number of large-capital-
ization securities plus a selection of securities
within each industry group to match the capital-
ization weights of the index. The lesson of
practice suggests that the strength of the error-
maximization process and/or the limitations of
available equity risk models may significantly
limit the value of MV optimizers even when
applied to structuring pure index funds.

Tilted Index Funds

Tilted index or “value-added” funds mini-
mize tracking error with respect to the selected
index while maximizing other portfolio charac-
teristics, such as dividend yield. These addition-
al objectives can be treated as factors in the
optimization objective function. As components
of a separable utility function, they operate as
penalty functions trading off one portfolio at-
tribute for another.?® This procedure can raise
problems, however, both because it is likely to
introduce biased estimates of the characteristics
included in the objective and because it requires
assigning appropriate utility weights to the fac-
tor functions, which may be very difficult to
rationalize or control.

Asset Allocation

When applied to the asset allocation problem,
MV optimization aims to find an optimal mix of
asset classes. The analysis may include domes-
tic and foreign equity market indexes and vari-
ous categories of corporate and government
bonds. The number of assets is generally small,
usually significantly less than 20.

MV-optimization estimates, even when
based primarily on historical data, may be rea-
sonably reliable in the asset-allocation context.
This is because a relatively small number of
estimates are required and because they are
often intended to reflect the long-term structure
of financial markets. The character of the “opti-
mal” allocation may consequently be anticipat-
ed, and errors created by the input estimates
more easily controlled. Benchmark asset alloca-
tion may be particularly beneficial in reducing
the impact of estimation errors and focusing the
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optimization process on the investor’s valid
investment objectives.

On the negative side, asset allocation without
a suitable benchmark is significantly error-
prone because the focus is on the least reliable
result of the optimization—the financial struc-
ture of the optimal asset mix. The most impor-
tant operative issue—non-uniqueness—implies
that there may be statistically equivalent MV-
optimal asset allocations with very different
financial structures. This effect is often observed
in the time-period sensitivity of asset-allocation
results. A reliable optimal asset mix recommen-
dation requires a more than casual understand-
ing of the characteristics of the confidence re-
gion associated with the input estimates.

Conclusion

Markowitz MV-optimization technology is not
easy to use properly. In fact, equal weighting
may significantly outperform unconstrained
MV optimization in many cases. The fundamen-
tal problem is that the level of mathematical
sophistication of the optimization algorithm is
far greater than the level of information in the
input forecasts. MV optimizers operate in such
a manner that they magnify the errors associat-
ed with the input estimates. Without careful
problem definition derived from sound invest-
ment judgment and sophisticated adjustment of
the inputs, MV optimization may often do more
harm than good.

Given the increasing potential for error maxi-
mization as the number of assets under consid-
eration increases, the optimization process must
be carefully controlled if it is to produce solu-
tions of practical value for active equity manag-
ers. Optimization should be defined with re-
spect to a suitable benchmark. Transaction and
liquidity cost constraints and appropriate ad-
justment of the inputs are generally recom-
mended. Sector and industry constraints, if
available and appropriate, may be usefully in-
cluded. The operative principle is that any infor-
mation on the structure of the optimal prior, to
the extent that it is reliable, may be included in
the definition of the optimization problem.

Nevertheless, the fact that priors and con-
straints are generally required to derive finan-
cially meaningful optimized portfolios may indi-
cate that MV optimization is often superfluous
or even counterproductive, and that simpler,

more direct approaches to portfolio construction
may often be advisable.

Appendix

Traditional Quadratic (MV)
Optimization
MYV optimization maximizes

pu-\o”
or
a-hwk(B-Br)*
subject to the following linear constraints

X=0

2X=1
where
p = expected portfolio return,
o® = portfolio variance,
X = proportion of initial wealth invested in an
individual asset,
N = risk-aversion parameter, which varies to
trace out the MV efficient frontier,
a = expected portfolio systematic risk-adjust-
ed (residual) return,
B = estimated portfolio systematic (beta) risk,
w* = estimated portfolio residual risk,
Br = target portfolio beta, and
k = a prespecified positive constant.

The computation may include transaction cost
and other linear constraints (e.g., yield or P/E
portfolio values).

The IC Adjustment

A simple use of linear least-squares regres-
sion provides a useful foundation for the IC
adjustment procedure for many applications.
Assume that a forecast process provides esti-
mates of systematic risk-adjusted returns or
alphas, where the cross-sectional mean is zero.
Assume also that the subsequent ex post alphas
for each stock are also available, with mean
equal to zero. Perform a linear least-squares
regression of ex post against ex ante alphas:

Aj =C + dai + g
where

A; = ex post alpha,
¢ = the constant linear regression parame-
ter,
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d = the slope linear regression parameter,
a; = ex ante alpha and
g = the error term.

By assumption, ¢ = 0. By definition, the
regression coefficient, d, is the IC adjustment,
where

d = ICo{A)o()

and
IC = cross-sectional “information” correla-
tion of ex ante and ex post alpha,
o(A) = cross-sectional standard deviation of ex
post alpha and
o (@) = cross-sectional standard deviation of ex

ante alpha.

The product, de;, is interpretable as the “excess
return on average associated with forecast al-
pha, ;.”” The IC adjustment parameter, d, pro-
vides the appropriate scale transformation of
the forecast alpha with respect to ex post alpha
for the given stock universe.

Note that the value of d requires three fore-
casts for the given stock universe—(1) the IC
value; (2) the ex post level of volatility, o(A);
and (3) the implicit forecast horizon. The values
of IC and o (A) can be estimated from historical
data or may be input as subjective estimates.
For many stock valuation models, the IC is
assumed to have a value of the order 0.05 to
0.20. In applications, it may be appropriate to
use different values of the IC adjustment param-
eters, depending on the characteristics of the
stock universe (e.g., growth stocks are likely to
have very different IC and volatility values and
forecast horizon than utility stocks).

The IC adjustment is essentially a two-step
process—a ratio scale transformation of the
forecasts, indicated by the ratio o (A)/o (a), fol-
lowed by a transformation based on the level of
the information in the forecasts, indicated by
the IC multiplication. It is this first step that is
often not well understood in traditional applica-
tions of the procedure.

For ordinal or rank data, the Ambachtsheer
procedure for creating forecast alpha implies
that o (A)= o () by construction. In this case, d
= IC, which rationalizes common institutional
practice. For the traditional dividend discount
model (DDM) alpha, the simple IC procedure—
multiplying alpha by the value of [C—is often
not valid.” The problem is: Under what condi-
tions can we assume that o (A)=0o(a)?

Consider the following exercise. For many
traditional DDMs, o («) is approximately 3 per
cent.”® Assume, as is traditional in applications
associated with DDM alphas, a forecast horizon
of one year and a representative capital market
universe. To compute o (A) assume a market
standard deviation of 20 per cent and a multipli-
er of 1.5 for the cross-sectional standard devi-
ation of stock alpha; i.e., o (A) is approximately
30 per cent. Finally, assume an IC value of 0.1.
In this case, the valid IC adjustment of DDM
alpha is one; the IC adjustment is not a shrink-
age operator. Valid shrinkage of DDM alphas
may require a shorter forecast horizon assump-
tion and/or lower IC value.
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