
 

 
Estimation Error and the Fundamental Law of Active Management:  
Technical Companion 
 
By David Esch, Richard Michaud, and Robert Michaud 

 
Introduction 
This document provides supplementary technical and explanatory details of the simulation 
experiment in “The Fundamental Law of Active Management: Is Quant Fundamentally Flawed,” 
forthcoming in the Journal of Investing, and covered also in the CFA Presentation “Is Quant 
Fundamentally Flawed?” given on April 16, 2020, which can also be viewed online. In order to 
provide proper context, some of the material from the forthcoming paper is included in modified 
form here, but it is generally assumed that the reader is familiar with the main article. 
 
Our simulation experiment is meant to bring together results from previous experiments 
including Jobson and Korkie (1981) and Frost and Savarino (1988). They studied the simulated 
out-of-sample performance of (1) budget-only constrained Mean-Variance optimization, (2) 
positivity-constrained (long-only) optimization and (3) equal-weighted portfolios using various 
estimation procedures on plausible simulations from real data. In particular, these simulation 
studies investigated which method has the best average referee-scored performance 
(information ratios from the simulation parameters) under various conditions of estimation error 
(controlled by having each method operate on blocks of data simulated from the referee’s inputs) 
and available information (controlled by varying the number of simulation periods in the 
estimation). While these two studies still stand as important milestones in understanding the 
impact of estimation error, they did not unite all of the treatments in a single study design. Jobson 
and Korkie (1981) showed that equal weighting outperformed budget-only optimization under a 
wide range of treatments. Frost and Savarino (1988) showed that constraints are helpful to out-
of-sample optimization performance, to a point, because constraints may minimize the greatest 
errors in the simulated inputs. Our study examines all of these treatments together in one 
experiment. 

 
Simulating Adding Breadth while Maintaining Information Levels  
In the Grinold and Kahn (GK) application of the fundamental law, each spin of the metaphorical 
roulette wheel adds one unit of breadth to the investment game. The more spins, the more on 
average the house wins even for a very small advantage, i. e. discrepancy between the odds and 
the payout. In our simulations, the critical deviation from the GK roulette wheel framework is 
that the probability of a win for the investment house is not known or constant but is unstable 
with estimation error. Our task is to construct a simulation experiment including estimation error 
where each additive asset adds a realistic unit of breadth for a given IC level. 
 

 
 

https://www.youtube.com/watch?v=SlzZr_D-HoU


Simulation Framework 
We begin with a sample of historical market return data1 which will be the basis for all our 
simulations. The particular dataset is immaterial to our argument. What is essential is that the 
master dataset represents a realistic vector of expected returns and full-rank covariance matrix 
for the largest sample size of the experiment.2 
 

Simulating Breadth 
We propose simulation framework that consists of drawing random permutations (sampling 
without replacement) grouped into increasing size subsets of the referee’s master set of risk-
return estimates from the master optimization universe. The averaging of the results of 
thousands of random permutations from the master stock universe provides a realistic 
simulacrum of the theoretical concept of linearly increasing breadth for a sequence of investment 
universes with increasing number of assets. Due to the average linear relationship of universe 
size to breadth the functional form of average out-of-sample simulation performance can be 
realistically compared to a monotonic increasing concave function prediction. Without 
estimation error, the optimizations should bear some resemblance to the Grinold and Kahn 
square root function of the Fundamental Law. A detailed description of why our estimation error-
free deviates slightly from a perfect square root relationship appears in a footnote in the last 
section of this document. 
 
We draw returns for each simulation from a multivariate normal distribution with parameters 
corresponding to the referee’s master mean and covariance matrix. Each simulation is built from 
a permutation of 500 stocks, arranged into increasing size portfolios in steps of five to 50 assets 
and then steps of 50 to 500 assets. Each increase in size adds 5 or 50 new assets to the portfolio, 
and the referee’s truth is the same as the simulation parameters, i. e. the corresponding elements 
of the master expected return and covariance matrix.  
 

 
 

 
1 We use a recent history of US market data (1994-2013) of publically available data to create our master asset list 
and corresponding mean and variance parameters. We selected all the assets from the largest 1000 in market 
capitalization with contiguous data from the period, excluding returns greater than 50% or less than -50% per month. 
We were able to find 544 stocks that met our criteria. Parallel experiments with shorter histories were also run to 
investigate if selection bias affects results, with no positive findings, so we present the twenty-year history here. 
Readers wishing to replicate our experiment can access our data at www.newfrontieradvisors.com/research/data. 
2 A principal components decomposition of our referee’s covariance matrix confirms that none of the independent 
dimensions of the system vanish. All of the eigenvectors are needed to replicate our forecast to reasonable precision. 
If some of the eigenvalues were vanishingly small, the practical answer to the question of breadth would be quite 
different from the mathematically rigorous one. However, the full covariance matrix of 500 assets in our dataset has 
a smallest eigenvalue of over 10 basis points, which is likely significant for most definitions of statistical significance. 
This would correspond to an annualized standard deviation of approximately 11%, which is substantial by most 
measures. The submatrices of smaller portfolios tend to have even greater values for the smallest eigenvalue. This 
line of reasoning confirms that the effective breadth of a sample of size N from our universe is identically N in a 
practical sense as well as the theoretical one.  



Covariance Estimation Issues 
We avoid the problem of ill-conditioned or non-full-rank covariance estimation by assuming the 
referee’s truth. This also avoids arbitrariness in covariance estimator choice, on which experts 
disagree as to best practices, and avoids potential blame for underperformance on badly 
conditioned covariance matrices or suboptimal estimation procedures.3 It also means that our 
results represent a generous upper bound of any practical estimation of the covariance matrix 
on out-of-sample performance in actual practice. Our results are averages from 16,000 
simulations of the process of simulating returns for each of the 19 nested subsets relative to the 
referee’s truth.  
 

Simulating IC 
We examine three levels of IC: 0.10, 0.20, and 0.30. The IC levels in the experiment are attained 
by varying the number of periods of simulated returns in the data blocks used for estimation for 
optimization inputs. The best numbers of return periods were determined as follows: for a range 
of numbers, average correlations were computed between the mean of each number of returns 
and one independently drawn quarter of returns, averaging over many repetitions to eliminate 
Monte Carlo error. Then, the numbers of return periods most closely matching the target ICs 
were chosen. Errors were selected to overshoot the target IC, again generously to the 
optimization methods, in order to eliminate information shortfall as an explanation for 
underperformance. For our dataset, ICs of approximately 0.10, 0.20, and 0.30 corresponded to 
4, 13, and 30 simulation periods of returns. These numbers may be surprising to readers with 
experience in econometrics because such small sample sizes lead to what are conventionally 
thought of as very good ICs. The explanation for such good information levels is that in our 
simulation we have a truly independent and identically distributed (iid) sample from the referee’s 
master parameters. In practice, both independence and identical distribution of historical data 
are unattainable because of overlapping historical data and other estimation information 
(affecting independence) as well as the highly dynamic nature of capital markets (changing the 
return distribution). Given a set of non-identical assets it is not hard to believe that four truly iid 
samples might lead to a 10% correlation between sample mean and true parameters.  
 
Because of the Monte Carlo nature of our experiment, the average realized ICs for each sample 
size are not precisely equal to their target values. We present the average realized IC for each 
target IC and portfolio size in Table 1. The observation sizes for each target IC were determined 
by calibrating the largest portfolio size (500) for the experiment.4 While IC levels greater than 
0.10 are not formally applicable to predictions from the Grinold formula, our simulations 
transcend assumptions in the law and may have important teachings in other investment 
applications.  
 

 
3 In particular, this assumption avoids the issues in Fan et al (2008).  
4 Because of the positively skewed distribution of the sample standard deviation in the denominator of the sample 
correlation formula, the averages tend to be slightly lower for smaller sample sizes, although the realized ICs are still 
fairly close to their targets. Of course different datasets would probably require different numbers of return periods 
to attain similar average ICs. 



Table 1 
Realized IC by Universe Size 

IC 5 10 15 20 25 30 35 40 45 50 

0.1 (N=4) 0.0982 0.1035 0.1075 0.0978 0.1038 0.1076 0.1129 0.1205 0.1119 0.1127 

0.2 (N=13) 0.1810  0.1850  0.1882  0.1948  0.1964  0.1931  0.1980  0.1952  0.1978  0.2005 

0.3 (N=30) 0.2597 0.2688 0.2797 0.2848 0.2883 0.2892 0.2876 0.2930 0.2912 0.2935 

IC 100 150 200 250 300 350 400 450 500  

0.1 (N=4) 0.1138 0.1120 0.1117 0.1156 0.1140 0.1135 0.1134 0.1125 0.1146  

0.2 (N=13) 0.1996 0.2029 0.2029 0.2017 0.2039 0.2023 0.2010  0.2021  0.2045  

0.3 (N=30) 0.2984 0.3010 0.3020 0.3005 0.2998 0.2997 0.2984 0.3026 0.3019  

 
The purpose of averaging many permutations of the stock universes is to estimate, on average, 
the impact of realistic additive breadth with additional stocks in a realistic framework. While each 
of the five to 500 stock subsets without replacement will necessarily reflect the random vagaries 
of additive stocks for a particular selection on the results, an average of 16,000 such simulations 
represents a realistic estimate of linearly additive breadth based on optimization size for a 
realistic data set of historical returns. While another historical dataset set will exhibit differences, 
the characteristics of the results we present provides convincing evidence for many cases of 
practical interest.  
 

Experimental Treatments and Display 
In each case of simulated mean and variance inputs, we create MV optimized portfolios via three 
methods: unconstrained maximum Sharpe ratio, maximum Sharpe ratio with positivity 
constraints, and equal weighting.5 Average out-of-sample Sharpe ratios are then calculated for 
each method using the referee’s parameters.  
 
Our displays cover two ranges of optimization universe size in practice: asset allocation and 
equity portfolio optimization. Asset allocation strategies typically include five to thirty securities 
and rarely more than fifty. On the other hand, equity portfolio optimization strategies may 
include hundreds or even thousands of assets in the investment universe.  
 
The no-estimation-error case shown in green in the three panels of Figure 1 is the same in all 
panels, since the assets used in the system are derived from the same real data with the same 
means and variances. In simple terms, the green curve reflects the average Sharpe ratio of the 
referee’s return distribution for given optimization universe size free of estimation error, as in 
the roulette wheel game. Alternatively, it represents increasing the simulation parameter N, 
which defines the level of estimation error in the IC, as it approaches infinity representing perfect 
certainty. The additional noise added through estimation error in panels 1, 2, and 3 serve to dilute 
the signal and are calibrated to attain correlations of 0.1, 0.2, and 0.3 with respect to the true 
return distribution of the assets. Of course perfect estimation is never attainable in practice.6  

 
5 Other portfolio construction methods are possible but not part of the scope of our study. One obvious case is to 
compute Michaud and Michaud (2008a, b) optimized portfolios with positivity constraints.  
6 If IC is considered a measure of the signal-to-noise ratio, it is important to distinguish two types of noise which 
dilute the signal and lower the IC for a manager. The first type is determined by the random variation of the returns 



Simulation Results 
The three panels of Figure 1 show our simulation results for 0.1, 0.2, and 0.3 IC, with sizes of 
optimization universes ranging from 5 to 500 assets on each panel. Each value presented on the 
graph is averaged from 16,000 referee-scored simulations. Three curves in each panel show 
progressions of average Sharpe ratios resulting from three different optimization methods. The 
“unconstrained” series displays the out-of-sample averages of the simulated unconstrained MSR 
portfolios, the “equal weight” series displays the average Sharpe ratios of equal weighted 
portfolios, and the “constrained” series reflects the average Sharpe ratios of out-of-sample 
simulated long-only MSR portfolios. The fourth curve shows the average Sharpe ratios for 
unconstrained MV optimization for the no estimation error case.  

 
themselves, analogous to the roulette wheel described in Section 1.0. The second type of noise is estimation error, 
i.e. imperfect estimation of the probabilities associated with the first type. Our simulation framework includes both 
types of noise in the simulation of IC, but also includes the perfect estimation scenario with no estimation error. 
Having both allows a simulation of the impact of estimation error on portfolio value, as expressed by the maximum 
Sharpe ratio.  



 
Figure 1: Average Sharpe Ratios for three different portfolio construction methods and three different information 
coefficients for the equity optimization case, using the referee’s covariance matrix. Target information coefficients 
are not precisely attained by the simulations and realized ICs are shown in Table 1. This experiment was run on 
many simulations of up to 500 U. S. stocks which had at least 20 years of contiguous monthly price data ending in 
December 2013. 
 



Our simulations confirm the results in Jobson and Korkie (1981) and Frost and Savarino (1988). 
On the other hand, our experiments in Figure 1 are stark and dramatically at odds from principles 
of optimization portfolio design associated with applications of the Grinold formula from GK and 
CST and others. Growth in average Sharpe ratios is far less than the no estimation error 
relationship as a function of universe size posited in GK or in the value of unconstrained MV 
optimization posited in CST.7 In particular, note that unconstrained optimized portfolios may 
dramatically underperform both sign constrained and equal weighting out-of-sample for small 
optimization universes. Furthermore, note how positivity constraints depend on the quality of 
information and universe size. For larger portfolio sizes, the optimized cases often outperform 
the equal weighted case, with better performance for greater information levels and for positivity 
constraints.  
 
In the case of IC equal to 0.30, the out-of-sample unconstrained performance nearly attains the 
level of the constrained case for the largest sample size of 500 assets. However, it is essential to 
note that the Grinold formula does not apply to IC levels greater than 0.1. The Grinold proof 
would require revision of the functional form of the formula. In addition, these experiments 
assume clairvoyant forecasts. There is no consideration of financial frictions or investment costs 
of any kind that would likely severely limit the investment value of large optimization universe 
asset management. In addition, our assumption of an error free covariance matrix further 
upward biases our simulations. Our results vividly demonstrate the hazards of ignoring 
estimation error for optimization design.  
 

Further Discussion 
Our deliberate optimism on how additive breadth is modeled when increasing the size of the 
optimization universe in the simulations has important implications. All of the assets in the 
simulation universe are assumed to have some investment value. Consequently, an investor is 
little harmed by putting portfolio weight on a “wrong” asset. In the real world, constraints often 
limit the harm caused by misinformation. In a truly chaotic world with a lot of estimation error 

 
7 The no-estimation-error/roulette cases in the three panels of Figure 1 deviate somewhat from a precise square 
root function posited by Grinold for two reasons. Firstly, because the information in the means and variances of 
returns has a well-known factor structure, with the common factors explaining far more of the total information 
(variance) of the system than the individual idiosyncratic elements for each asset. Because of these large IC units of 
breadth, the roulette curve starts at a point greater than the zero intercept of the GK curve. In other words, the units 
of breadth coming from the first few common factors have an IC that is likely greater than the ICs of the units of 
breadth informing the idiosyncratic variances of the assets. The random ordering of the individual simulations and 
averaging guarantees that the idiosyncratic variances contribute to breadth on average linearly with the addition of 
assets, and have equivalent average IC as well, so the no-estimation-error curves do have the generally concave and 
monotone increasing shape of a square root law. Secondly, the no-estimation-error curves are not precise square 
root functions because our curves are measuring maximum Sharpe ratio, i.e. the rise over run on the mean-variance 
efficient frontier of the absolute weights, rather than the slope of the tangency portfolio or equivalently the slope 
of the active (benchmark-relative) unconstrained frontier, which is a straight line emanating from the origin. Because 
of these two considerations, our simulated no-estimation-error curves are not required by GK theory to be precisely 
square root curves, yet they remain close in shape to square root relationships. Our simulations show that the 
addition of estimation error to the system drastically changes the response curve of the maximum attainable Sharpe 
ratio from a vaguely square-root-like function to something else entirely. 



and bias, the equal weighted portfolio, which uses no “wrong” information to distinguish among 
assets, can be hard to beat, for small optimization universes such as in asset allocation strategies.  
 
The consistent slow rising level of unconstrained average maximum Sharpe ratios as universe size 
increases is a necessary artifact of our simulation framework. This is because, by design, our 
simulations assume a consistent level on average of realized IC regardless of universe size. In 
practice, many investment strategies have an optimal universe size. Beyond some point, 
increasing universe size is likely to be self-defeating in practice.  
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