
 

 

 

 
 
 

 
 
 
 
 
 
 

 

Deconstructing Black-Litterman:   
How to Get the Portfolio You Already Knew 

You Wanted1 
 
 

By 
 

Richard O. Michaud, David N. Esch, Robert O. Michaud 
New Frontier Advisors, LLC 

Boston, MA 02110 
 
 
 
 

 
JEL Classification: C1, G11 

 

Keywords: portfolio optimization, asset allocation, Black-Litterman, Markowitz 
optimization, Michaud optimization, estimation error, Monte Carlo simulation, Bayesian 
theory, implied returns, unconstrained optimization, market equilibrium portfolio  
 
 
Draft August 22, 2012.  Please do not copy or distribute without permission of authors.  
Forthcoming in the Journal Of Investment Management. 

                                                 
1 We wish to acknowledge helpful comments by Paul Erlich.   



 

2 

 

ABSTRACT 
 
The Markowitz (1952, 1959) mean-variance (MV) efficient frontier has been the theoretical 

standard for defining portfolio optimality for more than a half century.  However, MV 

optimized portfolios are highly susceptible to estimation error and difficult to manage in 

practice (Jobson and Korkie 1980, 1981; Michaud 1989).  The Black and Litterman (BL) (1992) 

proposal to solve MV optimization limitations produces a single maximum Sharpe ratio 

(MSR) optimal portfolio on the unconstrained MV efficient frontier based on an assumed 

MSR optimal benchmark portfolio and active views.  The BL portfolio is often 

uninvestable in applications due to large leveraged or short allocations.  BL use an input 

tuning process for computing acceptable sign constrained solutions.  We compare 

constrained BL to MV and Michaud (1998) optimization for a simple data set.  We show 

that constrained BL is identical to Markowitz and that Michaud portfolios are better 

diversified under identical inputs and optimality criteria.  The attractiveness of the BL 

procedure is due to convenience rather than effective asset management and not 

recommendable relative to alternatives.   
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EXECUTIVE SUMMARY 
 

Since the publication of their original article in 1992, Black-Litterman (BL) has become a 
popular method in practical finance for creating superficially stable portfolios, adjusted to 
investor views.  A popular perception is that BL can solve the instability problems of 
portfolios on Markowitz efficient frontiers.  In fact, the instability issues of Markowitz 
portfolios are caused by estimation error (Michaud 1998, 2008), which BL does nothing to 
explicitly handle.  The BL method assumes a perfectly known market portfolio in a state 
of undisturbed equilibrium, a perfectly known covariance matrix, and correct investor 
views numerically calibrated to perfectly quantify the exogenous knowledge of the 
investor.  On top of these heroic assumptions, the BL formula itself is built on faulty 
statistical theory and is not optimal in any mathematical sense.  Besides, since it is 
equivalent to a maximum Sharpe ratio Markowitz optimization with specific inputs, it 
inherits all of the instability of Markowitz optimization, especially when the frontier is 
extended beyond the BL portfolio. 
 
Black and Litterman (1992) give a tuning parameter τ to adjust the strength of the views.  
This parameter may be fixed or adjusted, and is in practice often used to guarantee 
investable portfolios.  Adjusting τ for investability amounts to either adjusting the data to 
fit the desired solution or adjusting one’s “exogenous” views, and is a violation of 
fundamental principles of statistical analysis.  Like the unadjusted BL portfolio, the τ-
adjusted portfolio can also be found on a Markowitz frontier with particular inputs and 
inherits the properties and shortcomings of that method. 
 
In our article, we provide a simple but detailed example of a realistic Black-Litterman 
analysis and show the corresponding Markowitz inputs and frontiers which contain the BL 
portfolios.  Moving away from the BL portfolios at their maximum Sharpe ratio points, 
these frontiers veer quickly into uninvestable portfolios with short and/or leveraged 
positions in some assets and are not useful to managers who require access to multiple 
risk profiles tailored to investors’ risk preferences.  The BL portfolios and frontiers in our 
example are compared with better solutions created with methods that explicitly account 
for estimation error.  Michaud efficient portfolios are better diversified and more 
intuitive, have superior out-of-sample performance by design, and do not rely on false 
assumptions or dial in a preordained result. 
 
Users of Black-Litterman or its implied returns should be mindful of these methods’ 
limitations.  BL does not solve but rather conceals the instability and estimation error 
problems of Markowitz mean-variance optimization.  Because it is not a proper 
optimization method and tends to assign too much confidence to personal views it may 
often miss useful information while exposing investors to unnecessary risk.  The simplicity 
and apparent adequacy of the procedure comes at the peril of ignoring better 
statistically-based methods that merge all of the available information into a more 
effective portfolio creation process. 
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INTRODUCTION 

 
For more than a half century, the Markowitz (1952, 1959) mean-variance (MV) efficient 

frontier has been the theoretical standard for defining linear constrained portfolio 

optimality.  Markowitz optimization is a convenient framework for computing MV optimal 

portfolios that are designed to meet practical investment mandates.   

 

MV optimization, however, has a number of well-known investment limitations in 

practice.  Optimized portfolios are unstable and ambiguous and highly sensitive to 

estimation error in risk-return estimates.  The procedure tends to 

overweight/underweight assets with estimate errors in high/low means, low/high 

variances, and small/large correlations, often resulting in poor performance out-of-sample 

(Jobson and Korkie 1980, 1981).  MV optimized portfolios in practice are often investment 

unintuitive and inconsistent with marketing mandates and management priors.  Ad hoc 

input revisions and constraints result in an MV optimization process that is largely an 

exercise in finding “acceptable” rather than optimal portfolios (Michaud 1989).  

 

To address estimation error issues in MV optimization, Black and Litterman (BL) (1992) 

propose a single Maximum Sharpe Ratio (MSR) portfolio.  This portfolio is constructed 

assuming: an unconstrained MV optimization framework; an assumed MSR optimal 

benchmark or “market” portfolio; an estimation error free covariance matrix; and active 

investor views.  BL optimal portfolios often have large leveraged and/or short allocations 

that may make them uninvestable in applications. Moreover, Jobson and Korkie document 

severe out-of-sample investment limitations for the unconstrained MV optimization 

framework, of which BL optimization is an example.2   

 

BL introduce an input “tuning” parameter  that enables sign constrained MSR optimal 

solutions.3  We describe the mathematical properties of BL, including -adjustment, and 

use a simple dataset to illustrate the procedures.  We show that the BL sign constrained 

portfolio is identical to Markowitz MSR for the same inputs and consequently no less 

estimation error sensitive.  BL optimality is also benchmark centric and subject to the Roll 

(1992) critique of optimization on the wrong efficient frontier.  The Michaud (1998) 

proposal to address estimation error uses Monte Carlo resampling and frontier averaging 

methods to generalize the Markowitz efficient frontier.4  We compare BL and Michaud 

                                                 
2 See also deMiguel et al (2009) for an empirical study on the same issue.   
3 Extensions of the BL formula include different types of nonlinear views, alternative view specifications, asset 
classes, and return distributions (e. g. Meucci 2008a,b).   
4 Michaud optimization was invented and patented by Richard Michaud and Robert Michaud, U.S. patent 
6,003,018.  (Michaud 1998, Michaud and Michaud 2008a,b), worldwide patents pending.  New Frontier Advisors is 
exclusive worldwide licensee.    
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MSR optimized portfolios under identical assumptions and show that the Michaud 

portfolios are better diversified and risk managed.5 

 

Section I describes the mathematical characteristics and statistical issues associated with 

the Black-Litterman procedure including -adjustment.  Section II illustrates BL 

optimization with a simple data set, compares the portfolios to Markowitz and Michaud 

alternatives, and demonstrates the sensitivity to covariance estimation error.  Section III 

discusses BL relative to benchmark centric optimization, unconstrained MV framework, 

and investor risk aversion.  Section IV summarizes and concludes.   

 

I. BLACK AND LITTERMAN OPTIMIZATION 

  

I.A. Black-Litterman Framework 

Black-Litterman optimization requires three investment assumptions:  1) unconstrained MV 

optimization; 2) capital market portfolio   in “equilibrium” on the Markowitz MV efficient 

frontier; 3) covariance matrix   without estimation error.  Under these conditions   is the 

MSR portfolio on the MV efficient frontier.  Unconstrained MV optimization and perfectly 

estimated covariance matrix allow computation of the “implied” or “inverse” returns 

     consistent with MV Sharpe ratio optimality (Sharpe 1974, Fisher 1975).  The result 

is a set of estimated returns   and covariance matrix   for which the market portfolio   

is the MSR efficient portfolio on the unconstrained MV efficient frontier.6   

 

In elemental form, the BL proposal is a rationale for the identification of a benchmark 

portfolio to anchor the optimization and overlay investment views.  Benchmark anchoring 

of MV optimized portfolios has a long tradition in investment practice and is subject to 

Roll (1992) critiques.7  The procedure trivially replicates its input absent any additional 

investor views.  Investor views are processed using an adaptation of the Theil and 

Goldberger (1961) mixed estimation formula relative to the implied return estimates   .8  

                                                 
5 Michaud and BL have been discussed as competing procedures (e.g. deFusco 2001).   
6 The use of implied or inverse returns as “default” return estimates in portfolio optimization is not 
recommendable.  Inverse returns are a function of the covariance matrix which, by definition, is devoid of return 
information.  Inverse returns function solely to reverse-engineer the unconstrained MV optimization and negate 
any optimality properties bestowed by that optimization.  Inverse returns are not unique and not on the same 
scale as actual forecast returns; a positive scalar multiple is also an inverse return.  Inverse returns require MSR 
optimality of the market portfolio, which is unknown and highly unlikely a priori.  Inverse returns require an 
unconstrained MV optimization framework, which is unrealistic for practical investment.  In Section III we further 
investigate the effects of estimation error in the covariance matrix on the BL process.   
7 See e.g. Michaud and Michaud (2008, Ch. 9) and references.  
8 The Theil-Goldberger formula is presented as a way to combine information extracted from data with 
exogenous information in a regression.  Mean estimation can be viewed as an intercept-only regression.  The 
derivation of the formula relies on the sampling distribution of the mean estimate as  a normal distribution 
centered around the sample mean and sample variance scaled down according to the number of observations.  
Since implied returns do not have this distribution, the derivation of the formula for adjusting the estimates to 
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The revised returns with views     are used to compute the BL MV optimal portfolio B.  

Deviations from the index weights indicate optimal overweights and underweights for 

each asset relative to the benchmark portfolio.   

 

I.B. Black-Litterman Mathematical Structure 

It is useful to briefly review the mathematical structure of the BL optimization 

framework.9 We are given data for N assets with theoretical mean   and known 

variance  .  We assume   a vector of “equilibrium” market or index portfolios weights.  

We construct an estimate of the “implied” or “inverse” expected returns     .    

represents the returns associated with market portfolio   in equilibrium for known 

covariance matrix  .   

 

Views are specified as     (   )  where   is a K x N matrix whose rows are portfolios 

with views,   is the vector of expected returns for these portfolios, and   is the 

covariance matrix for the views.  In the terminology of Bayesian statistics, we assign the 

views as the prior distribution.  BL introduce a tuning parameter τ to adjust the impact of 

the views. They express the distribution of the equilibrium mean as  (    )  The 

parameter τ may be viewed as a proxy for    , the reciprocal of the number of time 

periods in the data, or as a measure of the relative importance of the views to the 

equilibrium but is often used simply to find investable (long-only) BL optimal portfolios.  

The resulting posterior distribution then has a normal distribution with mean equal to the 

BL estimates which can be expressed as:   

 

         
  (

 

τ
      )

  

 (    )         (1) 

 

The formulation (1) is useful, since it decomposes the estimate into the original data-based 

estimate   and the contribution from the views  .  In fact, if the mean estimate is the 

vector of equilibrium implied returns  , the maximum information ratio unconstrained 

portfolio optimization results in portfolio weights PBL*, which are proportional to:    

  

              (
 

τ
      )

  

 (    )    (2) 

 

The second term in the right hand side of equation (2) is a multiplication of the matrix     

whose k columns are the portfolios with views, by the k by 1 vector (
 

τ
      )

  

 (  

                                                                                                                                                 
the exogenous views is invalid for the BL case.  Plugging the implied returns into the Theil-Goldberger formula is 
an approximation with unknown bias and error properties. 
9 We use the traditional notation of the BL literature (e. g. Black and Litterman 1992, Meucci 2008a). 
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  ).  Thus, in mathematical terms, the contribution of investor views to the BL portfolio 

is confined to the subspace spanned by the view portfolios.  More intuitively, the BL 

portfolio pushes itself towards or away from each view as necessary, but is limited to 

directions specified by the view portfolios themselves.  Active bets induced by including 

views result in allocations in a direction which is solely a linear combination of those 

views.   

 

I.C. Investable Black-Litterman Portfolios 

BL unconstrained MV optimized portfolios often possess large leveraged and/or short 

positions.  In practice, investors often require that optimal portfolios are investable; i.e., 

that they are sign constrained and/or linear inequality constrained within some specified 

range.10  By definition the equilibrium or market portfolio is sign constrained.  BL introduce 

the input “tuning” parameter       for finding portfolios between the BL portfolio 

  and index portfolio   that are non-negative (long-only) or satisfy some suitable 

inequalities.  The parameter  provides a mechanism for finding investable BL portfolios.  

The parameter operates as a scalar that divides the variances associated with the 

uncertainty of the views.  Smaller values of  cause greater inflation of the views’ 

uncertainty and limit their influence on the results.  As  is reduced, or the constant 

multiplier of the standard deviations of the views increased, the BL portfolio approaches 

the benchmark portfolio.  The value of  may be chosen to compute an investable BL 

portfolio when it uses just enough of the certainty in investor’s views to meet 

investability constraint boundaries.  The net effect of the -adjustment is to reduce the 

impact of the covariance matrix on the BL portfolio.  At sufficiently high certainty, the 

procedure essentially ignores the covariance matrix and the optimization framework. 

 

Without recourse to a formal -adjustment, an investor may define an investable BL 

portfolio simply by sufficiently increasing the standard deviations of any or all of the 

views.  However, such a process is clearly ad hoc.  Indeed, in a caricature of the BL 

procedure, some software providers have a “dial-an-optimal” option for each view so that 

an investor can create whatever BL portfolio desired.  In this case, BL is simply 

optimization by definition with little regard to investment value. 

 

I.D. Further Comments on the Black-Litterman Statistical Framework 

We note that no standard statistical procedure produces the implied returns as estimates 

for portfolio expectations.  The formula comes out of theoretical assumptions of market 

efficiency and equilibrium, and the additional assumptions of current efficient equilibrium 

market weights and an error-free covariance matrix.  Since estimation of the mean is 

                                                 
10 See Markowitz (2005) for a discussion of why inequality constraints are fundamentally important for financial 
theory as well as practical application.    
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ancillary to estimation of variance, using a mean estimate that is a function of the 

covariance estimate is tantamount to believing that there is no information for the first 

moment of the data, while there is perfect information for the second moment, the 

expected squared deviations from the unknowable first moment.  From a pure data 

analysis perspective this assumption is untenable.  The usual meanings of mean and 

variance have been lost, and the significance of these calculations is unclear other than as 

convenient inputs to an optimizer that has been designed to produce preordained 

answers. 

 

Additionally, the τ adjustment itself is an ad hoc modification of the prior distribution to 

steer the outcome towards some desirable result, which violates the principles of a 

rigorous Bayesian analysis.  The problem is that one does not change one’s internal beliefs 

to modify an outcome when confronted with those beliefs.  The only alternative 

characterization of τ adjustment is as a modification of the scale of the covariance of the 

data, which is also changing the model during the model-fitting stage.  The adjustment of 

τ to attain investability is an intervention which contaminates the rigor of the analysis and 

must be viewed as an ad hoc correction of a flawed procedure, and a major departure 

from rigorous statistical analysis. 

 

II. BLACK-LITTERMAN OPTIMIZATION ILLUSTRATED 

 

II.A. Risk-Return Inputs and Investor Views  

Institutional asset allocation often includes twenty or more asset classes.  For pedagogical 

clarity and simplicity, we use the eight asset class dataset described in Michaud (1998) to 

illustrate the characteristics of BL, Markowitz, and Michaud optimized portfolios.11  The 

eight asset classes in the dataset are displayed in column one of Table 1 and consist of 

two bond and six country equity indices.  The historical annualized risk-return estimates 

are based on eighteen years of monthly returns and given in columns three and four of 

Table 1.  The correlations are given in Table 1A in the appendix.   

 

The Michaud dataset reflects a simple global index universe.  We define a market 

portfolio as a 60/40 asset mix of domestic and international stocks and bonds.  For 

simplicity we equal weight the bond indices, equal weight U.S. vs. non-U.S. equity indices 

and equal weight the non-U.S. indices.  Our market portfolio allocations are given in 

column two in Table 1.12  The BL implied or inverse mean returns from the Sharpe-Fisher 

                                                 
11 This dataset is widely available and has been used in a number of estimation error optimization studies.  We 
note the pedagogical simplicity of a relatively small generic set of assets may minimize the instability that often 
exists in institutional asset allocation portfolios, particularly with respect to estimation error in the covariance 
matrix which accumulates quickly as the number of assets increases.   
12 We note that this “market” portfolio is in fact very close to in-sample MV efficient for the data.   
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procedure for the assumed market portfolio and covariance matrix are given in column 

five in Table 1.   

 

BL optimization requires at least one active investor view to avoid being self-referential.  

The Theil-Goldberger procedure used in BL is illustrated with the data in column eight in 

Table 1.  Assume a U.S. investor skeptical of European equities.  In our illustration we posit 

a 5% return premium for the U.S. versus European equity indices with a 5% uncertainty 

level (standard deviation).  In our example the investor feels that France bears slightly 

more of the brunt of this negative view on European equities so France is assigned 40% 

weight while Germany and the U. K. are each assigned 30%.  The statistics at the bottom 

of column eight in Table 1 show the following information:  the BL mean and historical 

covariance implies a US/EU equity premium of -1.5% with standard deviation of 16.7%.  The 

view updates the return estimates resulting in a 4.5% return premium and a 6.0% increase.  

The BL+view mean, given in column six Table 1, increases US return from 8.5% to 10%, 

while the returns for the three European indices are reduced from 10.9%, 8.6%, and 10.0% 

to 5.5%, 3.8%, and 7.3%. 

 
Table 1 

Risk-Return Inputs and Investor Views 

Asset Name 

Market  

Portfolio Mean 

Standard 

Deviation 

BL 

Mean 

BL+View 

Mean   

Investor 

Views 

Euro Bonds 20.0% 3.2% 5.4% 2.2% 2.2%   0.0% 

US Bonds 20.0% 3.0% 7.0% 2.6% 2.6%   0.0% 

Canada 6.0% 4.6% 19.0% 9.2% 9.6%   0.0% 

France 6.0% 10.5% 24.4% 10.9% 5.5%   -40.0% 

Germany 6.0% 6.4% 21.5% 8.6% 3.8%   -30.0% 

Japan 6.0% 10.5% 24.4% 7.8% 4.9%   0.0% 

UK 6.0% 9.5% 20.8% 10.0% 7.3%   -30.0% 

US 30.0% 8.5% 14.9% 8.5% 10.0%   100.0% 

     

View Prior Return 5.0% 

     

View Prior Std Dev 5.0% 

     

Data Return -1.5% 

     

Data Std Dev 16.7% 

     

View Posterior 

Return 4.5% 

     

View Effect on 

Return 6.0% 
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II.B. Optimized Portfolios 

The standard risk-return estimates associated with the BL optimization procedure are 

given by the means in column six and standard deviations in column four in Table 1 with 

correlations given in Table 1A in the appendix.  The market portfolio is reproduced from 

Table 1 in column two in Table 2.  The BL+view means are reproduced in column three in 

Table 2.  The resulting BL optimal portfolio including investor views is given in column four 

in Table 2.   

 

BL optimization is, by definition, market portfolio centric.  As noted earlier, only asset 

allocations in the view in Table 2 are affected by BL optimization relative to market 

weights.  Market portfolio anchoring is the source of a perception of stability in the BL 

optimization process.   

 
Table 2 

BL Means and Optimized Portfolios 

Asset Name Market 

BL+View BL  BL*  BL* 

Means Optimal Means Optimal 

Euro Bonds 20.0% 2.2% 20.0% 2.2% 20.0% 

US Bonds 20.0% 2.6% 20.0% 2.6% 20.0% 

Canada 6.0% 9.6% 6.0% 9.4% 6.0% 

France 6.0% 5.5% -6.5% 8.3% 0.0% 

Germany 6.0% 3.8% -3.4% 6.3% 1.5% 

Japan 6.0% 4.9% 6.0% 6.4% 6.0% 

UK 6.0% 7.3% -3.4% 8.7% 1.5% 

US 30.0% 10.0% 61.2% 9.2% 45.0% 

Return 6.1%   7.2%   5.4% 

Risk 9.6%   10.3%   9.5% 

 

As in this example, the BL optimal portfolio often includes large positive and short asset 

allocations and is often uninvestable in applications.  In many cases, investability requires a 

non-negative (long-only) optimized portfolio.  BL recommend using the input tuning 

parameter  to compute a sign constrained portfolio BL*.  The  procedure involves 

increasing the uncertainty or the standard deviation of the view.  Reducing confidence in 

the view results in a portfolio part way between the (presumably non-negative) market 

portfolio and the original BL optimal.  With just enough uncertainty the new optimal 

portfolio, BL*, will be non-negative (long-only) as well.   

 

The τ-adjusted view means and optimized portfolio BL* that minimally reduce the 

confidence level of the inputs to find a “sign constrained BL optimal portfolio” are given 
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in columns five and six in Table 2.13  In this case the BL* solution reduces the allocations to 

European equities uniformly away from BL optimal weights and adds the (negative) sum to 

the U.S. allocation.  The sign constrained BL* optimized portfolio is often the 

recommended BL optimal portfolio in applications.14   

 

II.C. Black-Litterman and Markowitz Optimization 

For sign constrained optimality, the relationship between BL and Markowitz is direct.15  

Given the BL* inputs the Black-Litterman MSR portfolio is exactly the same as the 

Markowitz MSR portfolio.  Consequently, BL is no less sensitive to estimation error than 

MV optimization.16   

 

We note that, in practice, the software for computing correctly -adjusted BL* means 

may be unavailable.  As a consequence some analysts may be tempted to use the MSR 

sign constrained Markowitz portfolio with BL+view means as inputs.  This will differ from 

the τ-adjusted “sign constrained BL* optimal portfolio” because the former maximizes 

Sharpe ratio subject to fixed MV inputs and constraints, while the latter simply adjusts τ or 

the standard deviations of the views, without statistical justification, until the desired sign 

(or other) inequalities are satisfied. However, the BL+view or BL* means are still derived in 

part from implied or inverse returns so both procedures are subject to the critiques of 

that approach. 

 

It is of interest to compare the BL* and classic Markowitz frontiers under the same 

assumptions.  Figure 1 displays the BL unconstrained MV efficient frontier and the 

associated classical Markowitz frontier for the BL* inputs.  Because the Markowitz 

portfolios are sign constrained, the frontier does not extend as far as the low risk or high 

return portfolios on the unconstrained BL frontier.17 However, the two frontiers coincide 

at the MSR portfolio.    
                   

                                                 
13 The value of  for the BL* portfolio is approximately 0.0702788871.  The sign constrained BL optimal portfolio 

can be computed directly by dividing the view standard deviation, 5% in Table 1, by  = 0.26510165421, resulting in 
a revised standard deviation of 18.8607%.   
14 As noted earlier, 1/T is sometimes proposed as the value of tau in the Black-Litterman formula.  For this choice 

of , the BL solution for our example is nearly the same as in Table 2:  20%, 20%, 6%, 0.11%, 1.58%, 6%, 1.58%, 
44.73%. For a rigorous data-driven Bayesian analysis, tau represents the factor 1/T which multiplies the covariance 
matrix of an observation to obtain the covariance of the sample mean vector.  The procedure is, of course, 

incorrect for implied returns.  Because of the arbitrary scaling of the view standard deviations, setting , to 1/T 
does not change any of our conclusions. 
15 These results can be generalized for inequality constrained optimality. 
16 It is worth noting that the formal identity between the BL and Markowitz MSR portfolios with BL* inputs in no 
way indicates foundational similarity.  Unlike BL, the Markowitz MV framework is consistent with standard 
statistical procedures of inference purely from data.   
17 We note that reasonable asset upper bounds on the BL unconstrained efficient frontier were necessary in order 

that the graph of the frontier would be bounded above.   



 

12 

 

II.C. Black-Litterman and Michaud Optimization 

Michaud optimization uses Monte Carlo resampling methods to address information 

uncertainty in risk-return estimates in the Markowitz efficient frontier framework.  

Michaud efficient frontier portfolios are an average of properly associated resampled 

Markowitz MV efficient frontier portfolios.  The procedure is a generalization of the 

Markowitz efficient frontier conditional on investment information uncertainty.18    

 

Table 3 compares the market portfolio in the example with the sign constrained BL* and 

Michaud optimal portfolios for identical inputs and criteria.  Under the same conditions 

the Michaud MSR portfolio is better diversified, less benchmark centric and less subject to 

large risky allocations.19   
 

Figure 1 

Black-Litterman and Markowitz Frontiers 

BL* Inputs 

  
 

*The -adjusted means and original covariance are inputs to Markowitz.  
 
                                                 
18 The assumed level of information in risk-return inputs is a parameter of the Michaud optimization process.  
Different levels of information lead to different efficient frontiers.  In this context the Markowitz efficient 
frontier is a Michaud frontier conditional on 100% certainty.  See Michaud and Michaud 2008a, Ch. 6 for further 
discussion of the patented Forecast Certainty (FC) level parameter.  In this case the parameter has been set to 
match the eighteen years of monthly historical return data in the Michaud dataset.   
19 Rigorous simulation studies have also shown that the Michaud optimized portfolios enhance the out-of-sample  
investment value of optimized portfolios relative to the MV optimized alternatives (Michaud 1998, Ch. 6; 
Markowitz and Usmen (MU) (2003), Michaud and Michaud (2008a, b).  Harvey et al (HLL) (2008a) present two 
studies where they dispute the investment enhancement results of Michaud optimization reported in MU.  
However, Michaud and Michaud (2008c) note that the HLL studies possess significant issues that limit the 
reliability of their conclusions.  Michaud and Michaud (2008c) conclude that HLL’s results do not contradict either 
MU or previous work by Michaud, which they acknowledge in Harvey et al (2008b).   
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II.D. BL* Markowitz and Michaud Efficient Frontiers 

For sign constrained MV optimization, an investor’s optimal portfolio is not generally 

defined by the MSR.  Some definition of risk aversion or approximate expected utility may 

properly define investor optimality relative to efficiently diversified alternatives.  

Consequently, it is of interest to consider and compare the induced Markowitz and 

Michaud sign constrained efficient frontier portfolios for this dataset given the BL* inputs.  

Figure 2 provides a composition map of the optimal asset allocations for the Markowitz 

efficient frontier portfolios.  The horizontal axis represents the risk of the MV optimal 

portfolios on the efficient frontier.  The vertical axis represents the optimal allocations for 

each asset class at each point on the efficient frontier.  The asset classes are color coded 

for identification and in sequence relative to the asset classes in the tables.  For our eight 

asset class data, the lower risk portfolios on the left hand side of the display show that 

Euro bonds are a dominant asset while at the extreme expected return or the right hand 

side of the figure Canada is the dominant asset.  Such an exhibit provides a 

comprehensive demonstration of the dubious diversification and stability inherent in a 

MV optimization.  Note that many asset classes are minimally represented in the BL* input 

Markowitz efficient frontier portfolios.  Note also that efficient frontier allocations may 

change sharply from one level of risk to another.  The MSR Markowitz portfolio with the 

BL* inputs is identified by the vertical line slicing the composition map at 9.6% portfolio 

standard deviation. 

 
Table 3 

BL* and Michaud MSR Optimized Portfolios 

Asset Name Market BL*  

  

Michaud 

Euro Bonds 20.0% 20.0% 23.0% 

US Bonds 20.0% 20.0% 19.9% 

Canada 6.0% 6.0% 9.9% 

France 6.0% 0.0% 4.3% 

Germany 6.0% 1.5% 4.7% 

Japan 6.0% 6.0% 6.6% 

UK 6.0% 1.5% 5.4% 

US 30.0% 45.0% 26.2% 

Return 6.1% 5.4% 5.9% 

Risk 9.6% 9.5% 9.3% 

                  *The -adjusted means and original covariance of BL* are inputs to Michaud, which is computed with 10,000 

simulated return series from the t distribution and the arc length rank association frontier-averaging algorithm. 

 

Figure 3 displays the corresponding composition map for the Michaud efficient frontier 

with BL* inputs.  As the display illustrates, the Michaud efficient frontier is characterized 

by smooth changes in asset allocations from one level of risk to the next.  Note that all 

the assets are well represented in the efficient frontier.  The stability of the procedure 
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and diversification indicated at every point on the efficient frontier is of a different order.  

The Michaud MSR MV optimal portfolio is indicated by a vertical line slicing the 

composition map.   

 

II.E. Impact of Covariance Estimation Error  

BL assumes error-free covariance estimates.  However, the assumption is invalid in 

practice.  The covariance matrix is a major source of estimation error for MV optimization.  

While estimation error accumulates linearly in return it accumulates quadratically in the 

covariance.20  As the number of securities increases, all things the same, covariance 

estimation error may often overwhelm the optimization process.21  

 

Figure 2 

BL * Inputs Sign Constrained Markowitz Frontier Composition Map 

 
 

We demonstrate the estimation error sensitivity of the BL optimization process by Monte 

Carlo simulating the covariance estimates and computing a statistically equivalent range 

of values of the BL and BL* means.  Each simulated covariance matrix produces a 

statistically equivalent alternative set of covariances and consequently an equivalent set 

                                                 
20 Noted by Jorion and referenced in Michaud (1998) personal communication.   
21 There is a persistent widespread error associated with the relative importance of estimation error in return 
relative to risk or the covariance matrix in the professional and academic financial community, usually associated 
with Chopra and Ziemba (1993).  Their analysis is an in-sample and utility function specific study that in no way 
correctly represents the actual results of the impact of estimation error in rigorous out-of-sample MV 
optimization simulation tests.  As Jorion has noted, estimation error in the covariance matrix may often 
overwhelm the optimization process as the number of assets increases.    
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of inverse means.22  Table 4 displays the BL means from Table 1 in the middle column and 

the simulated ranges for the indicated assets.  For example in Table 1 the BL mean for 

Canada is 9.2%.  The simulated 5th and 95th percentiles for the BL mean values are 7.4% to 

11%.  Table 5 presents a similar set of results for the BL* means.  In Table 1 the BL* mean for 

Canada is 9.6%.  The 5th and 95th percentiles BL* values are 7.1% to 11.8%.  We note that the 

observed variability is greater in Table 5, where the view affects the mean estimates.   
 

Figure 3 
BL* Inputs Sign Constrained Michaud Frontier Composition Map 

 
 

The results show there is no unique set of inverse means when estimation error is 

considered.  Together with the invariance of the implied returns to the data mean, the 

estimation error sensitivity of the BL procedure is enough to discredit any literal 

interpretation of BL means as actual estimates of expected return.  We note that our 

estimation error estimates are relatively benign given the generic character of the asset 

classes and the minimal size of the optimization universe relative to standard institutional 

applications.  In practical settings the consequences of covariance matrix estimation error 

could be far more detrimental to portfolio performance. 
 

An alternative estimation error computation presents a more dramatic view of BL 

sensitivity.  Assuming the BL means in Table 1 are correct, we simulate statistically 

equivalent covariance matrices and compute the corresponding implied market 

                                                 
22 This simulation requires some care.  This is because the covariance matrix is devoid of information on return 
and implied market weights are unique only up to a positive scalar multiple.  The simulations in Tables 4 and 5 are 
normalized so that the average return is always the same as for the original BL means.  The assumption of which 
mean is not material to the simulations.  The assumption that the mean is the same limits observed variability.   
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portfolios.  Table 6 provides the results of the experiment.  For example, in the case of 

Euro bonds, the market portfolio weight in Table 1 is 20% while the 5th and 95th percentile 

simulated asset weights range from -126% to 102%.  The results remind the reader that the 

BL procedure reflects an unconstrained MV optimization framework and confirm that the 

basic assumptions of BL optimization may be very unreliable even for a simple dataset.   

 

In practice it is essential for effective investment management to require limiting the 

impact of covariance estimation error.   Recommendable approaches include Ledoit and 

Wolf (2003, 2004) and similar empirical Bayes methods which may limit the impact of 

highly influential data creating bias in variance and correlation estimates.   

 
Table 4 

Ranges of Simulated BL Means 

Percentiles: 
5% 25% 

BL 

Means 75% 95% 

Euro Bonds 1.6 1.9 2.2 2.4 2.8 

US Bonds 1.8 2.3 2.6 2.9 3.4 

Canada 7.4 8.5 9.2 9.9 11 

France 8.4 9.9 10.9 12 13.5 

Germany 6.1 7.6 8.6 9.6 11 

Japan 4.7 6.5 7.8 9 10.8 

UK 8 9.2 10 10.8 12 

US 7.4 8 8.5 8.9 9.5 

 
Table 5 

Ranges of Simulated BL View Means 

Percentiles: 
5% 25% 

BL View 

Means 75% 95% 

Euro Bonds 1.4 1.9 2.2 2.5 2.9 

US Bonds 1.6 2.1 2.6 2.9 3.5 

Canada 7.1 8.6 9.6 10.5 11.8 

France 3.1 4.5 5.5 6.3 7.5 

Germany 1.6 2.9 3.8 4.6 5.8 

Japan 1.6 3.4 4.9 6.1 8 

UK 4.7 6.2 7.3 8.1 9.4 

US 8.2 9.3 10 10.5 11.2 
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Table 6 

Market Portfolio Ranges Assuming BL Means 

Market (%)  5% 25% Market 75% 95% 

Euro Bonds -126 -27 20 58 102 

US Bonds -54 -12 20 58 131 

Canada -12 -1 6 13 27 

France -7 1 6 12 22 

Germany -8 0 6 12 23 

Japan -5 2 6 10 18 

UK -9 0 6 12 24 

US 8 20 30 42 67 

 

III. ADDITIONAL BLACK-LITTERMAN ISSUES 

 

III.A. BL is Benchmark-Relative MV Optimization 

In BL optimization, the” market” portfolio assumption drives the procedure.  However the 

“market portfolio in equilibrium” is always unknown and more generally indefinable.  

There is much estimation error of the optimal market portfolio that is ignored, by fiat, by 

the procedure.  The mathematical trick of estimating “implied returns” can make any crazy 

portfolio MSR optimal.  The procedure provides no constraint on investment reality.  

Essentially, BL optimization solves estimation error in MV optimization by ignoring it.   

 

Benchmarks have often been used to anchor an optimization process and limit ambiguity 

and instability.23  However, benchmark centric optimization has serious investment 

limitations.  As Roll (1992) demonstrates, unless the benchmark is precisely ex ante MV 

efficient, the benchmark centric framework leads to optimization on the wrong efficient 

frontier.  There are always portfolios that have less risk and/or more expected return than 

the benchmark centric efficient portfolios.  Benchmark centricity limits the investment 

value of BL optimization in practice. 24  

 

III.B. BL is Unconstrained MV Optimization 

Linear inequality constraints fundamental to asset management are ignored in the BL 

optimization process.  Jobson and Korkie (1980, 1981) show that unconstrained MV 

optimization has little, if any, investment value relative to simple equal weighting.  Frost 

                                                 
23 There may be financially valid reasons for using benchmark centric optimization.  One example may be the 
definition of a benchmark in terms of the “use of invested assets.”  In this context the benchmark portfolio may 
represent an individual’s or institution’s liability.  Grinold and Kahn (1995) provide a useful residual return 
framework suitable for many equity portfolio management mandates in institutional practice.  However, their 
analysis is generally not addressed to asset allocation applications.  See Michaud and Michaud (2008a, Chs. 9, 10) 
for further references.   
24 Roll notes in his conclusion that the suboptimality of the benchmark may need to be balanced against the 
impact of estimation error on MV optimization.   
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and Savarino (1988) demonstrate that constraints often reduce the impact of estimation 

error on MV optimality.  Regulatory restrictions and institutional limitations are real world 

considerations in defining an optimal portfolio.  Importantly, Markowitz (2005) shows that 

consideration of necessary linear constraints in any practical application of portfolio 

optimization alters the viability of tools of modern portfolio management and important 

theorems of modern finance.  From either a theoretical or practical point of view, proper 

linear constraints are a necessary condition for effective investment management.      

 

III.C. BL Ignores Investor Risk Aversion 

BL optimization computes a single optimal portfolio and does not control for level of 

investor risk aversion.  However, a wide consensus exists in the academic and professional 

financial community that the choice of portfolio risk is the single most important 

investment decision.25  The linear constrained Markowitz and Michaud efficient frontiers 

provide a range of risk habitats for rational investment decision making.  The BL portfolio 

risk level may often be inappropriate for many investors.  Efficient frontiers are essential 

for managing investor risk habitats.    

 

IV. SUMMARY AND CONCLUSION 

 

Black-Litterman (1992) (BL) optimization produces a single maximum Sharpe ratio (MSR) 

optimal portfolio on the unconstrained MV efficient frontier based on an assumed MSR 

optimal benchmark portfolio and active views.  BL optimization often results in 

uninvestable portfolios in applications due to large leveraged and/or short allocations.  BL 

introduce an input tuning parameter τ to compute BL* sign constrained portfolios.  We 

present a mathematical and statistical analysis of BL optimization and illustrate the 

procedure with a simple dataset of eight asset classes.  We compare constrained BL to 

Markowitz and Michaud under identical conditions.   
 

BL optimization claims to solve the investment limitations in practice associated with 

classical Markowitz MV optimization.  However, we show that the ad hoc “market” 

portfolio assumption drives the process and that estimation error associated with 

estimating the “market portfolio in equilibrium” is solved by ignoring it.  In addition the 

unconstrained MV optimization framework used by BL is known to have little, if any, 

investment value, and constrained BL optimization is often identical to Markowitz and 

consequently inherits the known limitations of MV optimization.  Moreover, the process 

of computing “inverse” returns and adjusting the prior with τ-adjustment is inconsistent 

with principles of modern statistical inference and rigorous Bayesian analysis.  Finally, the 

BL optimal solution ignores the importance of investor risk aversion while the resampling 

                                                 
25 Brinson et al (1986, 1991).   
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process associated with Michaud optimization produces superior risk managed and 

diversified portfolios.   

 

Portfolio “acceptability” is more the norm for asset management in practice than widely 

recognized.  Many investment firms do not use optimization technology and their 

investment process closely mirrors the BL framework of positing a benchmark and 

considering investment tilts. 26  Even in a more formal optimization investment process, 

instability and unintuitiveness often motivate ad hoc practices that amount to little more 

than the computation of a committee’s notion of “acceptable” portfolios.  However, 

acceptable is not investment effective.  Effective asset management requires an inequality 

constrained optimization framework, an efficient frontier of optimal risk managed 

portfolios for satisfying risk habitats, input estimation consistent with modern statistical 

inference and estimation error effective portfolio optimization.  While BL may be 

convenient it is not recommendable given available alternatives.  The potential for adding 

value with rigorous investment and statistical principles seems a challenge well worth the 

effort.    

 

APPENDIX 
Table 1A 

Correlations 

Asset Name 
Euro 

Bonds 

US 

Bonds 
Canada France Germany Japan UK US 

Euro Bonds 1 0.92 0.33 0.26 0.28 0.16 0.29 0.42 

US Bonds 0.92 1 0.26 0.22 0.27 0.14 0.25 0.36 

Canada 0.33 0.26 1 0.41 0.30 0.25 0.58 0.71 

France 0.26 0.22 0.41 1 0.62 0.42 0.54 0.44 

Germany 0.28 0.27 0.30 0.62 1 0.35 0.48 0.34 

Japan 0.16 0.14 0.25 0.42 0.35 1 0.40 0.22 

UK 0.29 0.25 0.58 0.54 0.48 0.40 1 0.56 

US 0.42 0.36 0.71 0.44 0.34 0.22 0.56 1 

 

  

                                                 
26 The process is described in Michaud (1989).   
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