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INTRODUCTION

Let f£(x) be an arbitrary given continuous real valued
function on iO,l]. Let G={g(x)} be a given set of admissible
approximations, and let]||.|| be an appropriate norm. A
typical approximation problem concerné finding a g% belonging
to G such that

| 1£-g%| < |£-¢]|
for all geG.

Implicit in the above formulation is the assumption that
the direction perpendicular to the x axis is the most
‘appropriate direction in which to measure errors. There
are 1mportant cases when this assumption is justified:

e.g., in linear regression proﬁlems where it is assumed
that inaccuracies are present in the ordinate but not

the abcissa. There are, however, many practical cases where
this assumption doesn't hold: e.g., when both variables are
subject to inaccuracies. Within the context of a linear
regression problem, if we were to reverse the roles of

the experimental and controlled variables, the regression
line would, in general, be different from the original
regression line. Reversing the roles of the variables is
equivalent to measuring error in the direction parallel

to the abcissa. Thus we see that best approximations can
depend very strongly on the direction of measuring the

error.




CHAPTER I
PRELIMINARIES

1.1 THE PROBLEM

We will restrict our attention to approximating defined
and continuous real valued functions on the interval [0.1].
Our approximating functions will be straight lines: ax+b,
The direction of measurement, the angle g , will be that
angle formed by rotating a line perpendicular to the x
axis through an angle B, the counterclockwise sense taken
as positive. From the definition it follows that the slope
of lines with direction of measurement g is tan (g+w).
1.2 THE ERROR FUNCTION éB(X) E

Given a function f(x) on [0,1] a straight line ax+b
and a direction of measurement g we wish to find the error
from the function to the approximating straight line for all
directions g. If (x,£(x)) 1s a point on the curve, let s
be the abcissa of the straight line ax+b which corresponds

to the point (x,f(x)) for direction of measurement

\ [X,£(x)]

FIG. 1° X o




taking differences along direction of measurement B. The
~general equations relating points in the original
coordinate system to the B rotated coordinate system is
xB(x)=xcosB+f(x)sinB
yB(x)=—xsinB+f(x)cosB ' (3)

xB(x) is the abcissa in the new frame of reference. A

straight line is thus ch(x)+d. If we are given the straight

line as+b in the original coordinate system, the rotated
version of ax+b mﬁsf‘be equal to ch(x)+d. The equations
relating the slopes and y intercepts of the same straight
~line in the two coordinate systems is:
c=(acosp -sinBR)/(asinp+cosf)
d=b/(asinB+cosp ) | (4)
a=(sinp+ccosp)}/ (cosg-csing)
b=d4/(cosBp -csinR)
Within the new frame of reference, the error between f(x)
and the straight line aX+b is
eB(x)=yB(x)—ch(x)—d=(£(x)—ax—b)/asin5+cosg )
(5)
the second equality following from {(4) and the definitions
{3) where xs(x) is the abcissa of the point (x,£f(x)) in

the rotated coordinate system.




The region enclosed by eB(x) and the x_ axis is, in

B

~general, open at the end points. We can close the region
by includiné perpendicular lines from the end points to the
Xg axis. Hence, the area enclosed by eB(x) is the regiomn
R bounded by the closed curve C consisting of the curve
eB(x), the perpendicular distance from one end point to the

x, axis, the XB axis from one end point perpendicular to the

B

other, and a perpendicular from the x axis to the second
B

end point of eB(x). We will denote these four pieces of C

1’ Cz’ Cs’ 4’

arcs. Since f(x) is continuous on [0,1], it is bounded

C all of which are rectifiable Jordan

by C

and hence eB(x) is bounded. Thus the region enclosed by C

is a closed bounded region of Ez.
C is not, in general, a Jordan curve, since a straight

line may intersect a Jordan arc infinitely often. For

most functions of interest, however, this is not the case.

Hence, in the sequel, we shall assume that £ satisfies

the condition that no straight line intersects the function

infinitely often. Thus by the indicated construction of

C and the restrictions of f we can satisfy the hypothesis

of Green's theorem. The area is given by (7) for C and we

have
A=[ -ydx =[ -ydx+[ -ydx+[ -ydx+[ -ydx (8)
C c, C, c, c,
At C2 and 64, dx is zero. Along C3 the ordinate is zero,

Therefore we have the result




CHAPTER 11

L_ NORM

2.1 DEFINITIONS AND CHARACTERIZATION OF BEST APPROXIMATIONS
The L, or Chebychev norm of a continuous real valued

function £ is

L £]] = max{f(x)] (10)
®  x 10,1]

For polynomial and therefore straight line approximations
the best approximation exists, is unique and is character-
ized by the fact that the maximum value of the error in
absolute value is attained at at least n+2 points, where n
is the degree of the polynomial, on the interval of
approximation. [Handscomb, 1966, Chap. 7]. For our purposes,
the characterization theorem implies that a best straight
line approximation is one whose error function attains its
max at, at least 3 points, in the intefval [0.1]7.
2.2 SOLUTION

Let a*x+b be a best approximation to f for g=0. Then
for arbitrary g, the error function eB(x)_given by (2) for
a*x + bx is

[eB(x)|= | (£(x)-a*x-b*)|/|(a*sing+cosp)} | (11)

which has the characterization property for allg . Thus
we have proven the following:
Theorem 1: The best straight line approximation to a
continuous real valued function f(x) on a closed bounded

interval is independent of the direction of measuring




CHAPTER II1
L1 NORM
3.1 DEFINITIONS
The L1 norm is defined as
1

[ T€]],=J1£(x) [dx (12)
0
The L1 error for e (x) from (9) is

oG] =fle (] x, (x)dx (13)
0

3.2 SOME PROPERTIES OF THE INTEGRAL OF eB(X)

Area is by definition invariant except for sign to
the coordinate system in which it is measured. It
may then appear that (9) must be invariant for all 8.
This 1s not so because the closed curve C is in general
different for each B and not strictly the rigid rotation
of the error in the original coordinate system. The
change in areas under the curve eB(x) for different B
results from the fact that areas are added or deleted

at the ends of the curve for different 8.

area added

#0
. X :
Yy ¢ A
(x,£(x) ) &
- /|
yrax+b
Arfﬂ*“‘ﬁs '
\ |
\\//’ |
area adde&\ |
B. #0 N I
N A I
1 x*

FIG. 2




approximation. A polygonal approximation is linear

over subintervals of [0,1] and agrees with f at the ends
of these subintervals. The ends of the subintervals are
called nodes, and we assume that the points 0 and 1 are
included among the nodes.. For the purposes of the dis-
cussion here we will include in the set of nodes all of
the points of intersection of the approximating lines

in each subinterval; Let us call this expanded set of
nodes the set U where U= 0=u0<u<...un =1. Note that U
is necessarily finite since we have’ restricted our
definition of area to functions which are not inter-
sected an infinite number of times by any straight line.
The area over each subinterval is independent of 8 for
all g, so that the area is independent of g . If we
form the L, error over [0,1] then it is the sum of the
L, errors over each subinterval. But by construction of
thé subintervals, the error function is either wholly
positive or negative in the subinterval and the L, error
in each case is thus exactly plus or minus the area of
each subinterval. But each area, is independent of g,
thus (13) must be also. Hence we have proven the
following

Theorem 3: Polygonal approximation in L is independent

of B, the direction of measuring the error.
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CHAPTER 1V
DISCRETE LEAST SQUARE APPROXIMATION
4.1 INTRODUC%ION_
We are given a function f defined on a finite point
set
X =(xi |i=1,2,....,N)}
The error of the approximation at xi is
e(xi) = f(xi)~axi-b

and we wish to minimize
N
i=1
Equation (16) is an inner product and the square root

F(a,b)= (f(xi)—ax—b)z (16)

of (16) defines a norm. As we have set up the problem, the
solution to (16) is the regression line, a subject of major
importanée in statistics.

Since the function F is comvex in a and b [Rice, 1964,
p. 31, Cheney, 1966, p.25] then setting the partials of F
equal to zero defines the conditions for a minimum. Thus

the a* and b* which minimize (16) must satisfy the conditions

Iy x,
L y;

which leads to the solutions

% 2 & 1
a 2xi+ b* Ix. (17)

& %
a in + b*N

b* = y-a*x

N sy.x:- Ix, Zy.

a#*

Ny x3 - ( zxi)z
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over all a,b,8 . By using the form of the error (5) we can

put (26) in the more tractable form

F(c,d,g )= J(y; -cx; -d)? (27)
B B
where )
xiB— xicosB+ yi51n6
Yi = -xisin3+yicoss (28)
B

From (27) it is clear that F is a convex function in c and 4.
The analysis of (27) thus proceeds in the same manner as

(16) in 4.1. We have the conditions for minimum

ZVinis= c*y X;s + d®y Xig (29)
zyis= c*y xiB + d*N
If we define
'Es =Y xiB/N 50)
Vo =1 yiB/N

an& we assume that the data has been normalized forB =0,
then fﬁ and ?B is zero for all B; i.e., the normalized
origin is independent of B. We therefore assume the normali-
zation condition (20) holds which again simplifies the solution
for a minimﬁm which is

d®=0

ck= jx_ y. [} x2 (31)
1B 18 1B




17
and bounded.
4.4 ORTHOGONAL REGRESSION LINE AND PRINCIPAL AXIS OF INERTIA
The orfﬁogonal regression line is that approximating
straight line which minimizes the square perpendicular dis-
tance from the data points to the line of approximation.
[Linnik,1961] We can state the orthogonal regression
line problem within the context of the least squares problem
where the approximating straight line is given in terms of
the original coordinate system. Let B be a given direction of
error measurement. The orthogonal regression line problem
then restricts its attention to straight line approximations
whose slope is tﬁn B. Thus the orthogonal regression error
in terms of (26) is
F{a,b,B) = F(tang, b,B) (38)
and the orthogonal regression line is thatg#*, b* such that
F(tanp*, b*,p*)<F(tanp, b,R) (39)
for all g, b. For the least squares problem, the best
approximation is given by a*, b¥*,p* such that
F(a*, b*,g*) < F(a,b,) | (40)
for all a,b,B.
For any given frame of reference g, it is true that
the best approximation may not have tanf =a; nevertheless,
we can prove that for 3%, the best approximation has tan
B *=a*, Hence

Theorem 4: F(a*,b*®,p*)=F(tanp*, b*,p*)
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tan 28= éKKX (41)

2 2
x — Uy

o
There are two solutions Be[-w/2,n/2]corresponding to the
absolute ming* and the absolute max. The unnormalized con-

dition for g% is

tan 28= ZZ(Xi-XJ(yi-y) (42)
E(Xi"i)'z(yi'V)

Since a*=tanp* (43}

then b#*=y-Xtanp® ‘ (44)

'since the line with slope tang® must go through the point
;,;. Thus (42}, (43) and (44) are the solution to the
discrete least square approximation problem for all
directions of measurement B, for unnormalized data.
4,6 REMARKS ON THE ORTHOGONAL REGRESSION LINE

From a curve fitter's point of view, the solution
derived in 4.5 satisfies the fundamental requirement of
minimizing square residuals without regard to any particu-
lar coordinate system for which the data happens to be
given. ¥From a statistician's point of view,however, there
are some disturbing problems. It is shown in [Roos,1938],
[Jones,1938] that the orthogonal regression line is not
invariant with changes in scale in y or x. If, e.g., we

change the scale in x to 2 x, the orthogonal regression line

is not in general a linear change in the original
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CHAPTER V

L, NORM
5.1 DEFINIT;ONS AND INTRODUCTION
The L2 norm is defined as

e, = CJEe2a0: /s (45)
and the best approximation in the L, norm by a straight line
is to find a*, b* which minimize

C(a,b)= ftf(x)-ax—b)zdx (46)
C(a,b) is a conzex function in a and b and exactly the same
analysis as in 4.1 applies for the solution a¥*,b*. The

normalization conditions are

1 1
0J’xdx=0 | off(x)dx=0 (46)
The normalized solutions are
b#*=0
1 1 1
ak= jxf[x)dx/ujx dx=3 [xf(x)dx (47)
0 0
and if we define
1
0; = {xzdx=1/3
1
U; =o{f(x)2dx (48)

Kyy =] xf(x)dx
then we can write the error of the best approximating
straight line as

g2 g2 -K2 (49)
Cla®,b¥)= X ¥y XV

o2
X
5.2 THE SQUARE Lz ERROR FOR DIRECTION OF MEASUREMENT 8
The square L, error for direction of measurement B is

the integral of the square of the error function where it 1is
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5.3 RESTRICTiONS ON THE RANGE OF B

The usefulness of a study on the dependence of best
approximations on the direction of error measurement is to
point out the existence of independence properties or
to dismiss direction effects by finding the direction with
least error without altering the essential characteristics
of the curve being approximated. Consistent with these
~goals is to restrict our attention to the directions of
measurement for which the curve is still a function within
the context of the rotated coordinate system.
Definition: Let P be the set of all B such that the curve

YB(X) is a function in the x coordinate system and

8> Vs
xé(x) is non-negative.

The characterization of the set P is not necessarily
simple and is dependent on the particular function being
approximated for such essential properties as open, half
open, closed. For example the function x gives rise to the
closed set P=[-27°, 90°]. The straight line y=c gives rise
to P=(-90°, 90°).

A given direction of measurement B gives rise to a
curve which isn't a function if at least two points on
the curve intersect a line with slope tan B . Since yB(x)
is continuous with continuous derivatives it is a smooth

curve and therefore there must exist Xo in [0,1] such that

the tangent of the curve in the Xg, Vg coordinate system
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by the mean value theorem of differential calculus

S (%) = X1 (8) () e (x ) CL0,11(53)

and we can infer that xB(x) is a monotone increasing function

xB(x) - X

of x.
Definition: Let P' be the set of all B such that

x4 (x)> 0 xe[0,1]
By definition P' is an open set and we set P'= (31}32].
Clearly, P' is contained in P and sinceg = 0 is in P'
P and P' is non-empty. If

M=max f'(x) m=min £'(x)
then

P'=(tan® M- ¢ , tan! m+ @ ).

Qur attention now focuses on the angles B,andp, for which
the set of x such that xé(x)=0 is non-enmpty.
Définition: Let Ql’ Q2 be the sets such that
={x| x}, (x} =0, xe [0,1]}

Q B,

Q2={x[ Xéz(x) =0, x e [0,1]}
Proposition 6: If Qi contains a convex interval (more than
one point) then g; is not contained in P.
Proof: Let [xl, xz] be contained in Qi’ then, by (53) XB(X)
is not monotone.
Proposition 7: if Qi contains a single point thenBi is
contained in P.
Procf: Let X be the single point and consider the intervals
[U,XO] and [xo,lj. Let x and y be two points in [0,1],

x<y. If x and y both in first or second interval then xB(x)
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If p.is even, the methods of theorem 9 directly apply and
Lp error 1s direction dependent. If p is odd, we can use
the argument of theorem 3 for the permanence of sign in
subintervals of [0,1]. Hence, the LP error is plus or
minus the value of the integrals in each subinterval, all
of which are direction dependent. Thus we have proven the
following
Theorem 11: The Lp error (56), 2 <p<w, is direction dependent.
5.5 BEST APPROXIMATIONS FOR g BELONGING TO P

For g belonging to P, by the remarks of 5.2, the
analysis of 5.1 is valid and the conditions for a minimum
in ¢ and d are o
glyé(x)xe(x)xé(x)dx = gjlng(x)xé(x)dx + ?fxs(x)xé(x)dx

1 1 1

Jys(x)xé (x)dx= gf xg(x)xp (x)dx + ?jxé(x)dx (57)

If we define

L 1
% =g (XX Fgef Vo (X)X} (x)dx (58)
JX'B(X)dX Oflxé(x)dx
and let
uB(X) = XB(X)-XB VB(X) = YB(X)-?B (59)
then
1 1
gus(x)xs(x)dx = 0 { vB(x)xB (x)dx = 0 (60)

or which, in terms of the normalized variables is the condition

1 1
x (X)x'"(x)dx =0 x)x!' (x)dx=0 (61)
g B( ) B( ) DI YB( ) 2 (x)
This assumption (61) simplifies the conditions for a
minimum (57) and the solution for a minimum with the

normalized variable assumption 1is
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case (58) is easily seen since

x = {che (x)x} (:'i)dx 1o |
B = 1/2x5(x)] = 1/2(cosg+(£(1)-£(0))sing)
70

(68)

of;'g(x)dx
which is directly dependent on B
5.7 PROPERTIES OF C(B)

Since £(x)} is continuous on [0,1], £(x) is bounded and
therefore for all real ¢ and d, the error function (5) and
therefore C(c,d,B) is bounded. Hence C(B) is bounded when
c* and d* are real.

In the case of d*, there is nothing to prove, since it
is always zero. The numerator of c* 15 bounded, therefore
c®* is infinite only when UiB is zero. This is equivalent
to determining when

x;(x)>:= (cosg+f(1)sin5)3 - (£(0)sinB)’= 0 (69)
Condition E69) is in the form

ud-vi= (u-v) (u?+uv+v?)=0 (70)
The second factor has only imaginary, non-trivial, solutions.
Thus the only real solutions of interest of (69) are

xB(l)—XB(O)=cosB+f(l)sinB-f(O)sinB= 0 (71)
or tang= 1/(£(0)-£(1) ) (72)

If g' is a solution of (71) or (72), thenf' does not
belong to P by definition of P. If f£(x) is a straight lime,
then P is open and B' is an end point of the P interval.

If £f(x) is not a straight line, the range of xﬁ(x) is a

compact interval, not a point. This means it must achieve
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We turn our attention to finding the solutions of  °
CE3)=0, since any relative mins in P must satisfy this
condition. If we let N and D denote the numerator and
denominator of (75), then
C'(p)=0 implies DN'-ND'=0 (76)
If we define
5§=Of;2£'(x)dx
5)2;01%(;() £1(x)dx (76)
5xyij1xf(x)f‘ (x) dx

then we can write N, using (48), as

=2 2_F2 2 2¢2_g2 s 2 '
N (cxgy ny)cos B+ (axﬁy 6Xy)51n B (77)
(0§5§+0§5§ - Znyﬁxy)SinBCOSB

and D as

3D=cos3g+ 3y cos?Bsing+ 3y? cospsin?p+ (y3-y3)sin’p

(78)

N' is a second degree equation in cos and sin, D!
is a third degree equation in cos and sin, therefore the
derivative will be a fifth degree equation in cos and sin.
By dividing throughout by cos?®, C'{R)=0 leads to a fifth
degree equation in tan. The function tan is periodic with
period ¢, but since C(B) is periodic with period 7 except
for sign this means that our fifth degree equation in tan
will lead to all critical points which characterize the
behavior of C(g). Thus we will have five (at most) solutions

in an interval of length 7 or ten solutions from [0,2].
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s
X = st ! xds y = S{ yds
53:-%5y s1-Sp (85)

The two solutions of (83) correspond to the max and min of
moments of iﬁertia about all axes. Since theorem 4 applies,
the solution (83) is equivalent to minimizing the error
G(c,d,B)= fSéB(x)ds (86)

The fundamentai difference between the minimization
of the continuous least square erfor for directions B and
(86) is that the arc length is direction independent whereas
the interval of integration d(xB(x) ) is direction dependent.
Alternately, we can view (86) as the continuous least square
error for a constant interval of integration.
5.10 EXAMPLES

For the class of functions, f(x)=xn, some simplifications
are immediate; i.e., y.= 1, y0=0.

Thus (80) reduces to

(b-c/S)tang +[(5b-2a)/3]tan“B+ (b-a+c/3)tan’B+(b-a-c/3)

tan2g[(2b-5a)/3]tanp+(c/3-a)=0
Further we can evaluate the quantities

ox?= 1/3 0;=1/((2n+1) ny=1/(n+2) §2=n/(n+2)

6;=1/3 SXy=n/(2n+1)

from which we derive the values of

a=(n-1)2/[3(n+2)2(2n+1)} b=n(n-1)2/[3(n+2) (2n+1)?]

c=2(n-1)2/19 (n+2) (2n+1)]

Using these results we can put (80) in the following form

(5n-2) (n+2)tan®pg+3(5n2+6n-2) tan*p+(13n2+10n-5) tan?

(5n%-10n-13)tan?B+3(2n?-6n-5)tanB+(2n+1) (Zn-5)=0




BIBLIOGRAPHY

Apostol, T.M. [1957]: Mathematical Analysis. Reading,

Mass: Addison-Wesley.

Cheney, E.W. [1966]: Approximation Theory. New York:

McGraw-Hill.

Courant, R. and Fritz, J. [1965]: Calculus and Analysis,

New York: Interscience.

Davis, P.J. [1963]: Interpolation and Approximation.

New York: Blaisdell.

35

Handscomb, D.C.[1966]: Methods of Numerical Approximation.

0xford: Pergamon.
Jones, H.E. [1937]: "Some Geometrical Considerations in
the General Theory of Fitting Lines and Planes”, Metron,

Vol. 13, No. 1, pp. 21-30.

Linnik, Y.U.[1961]:Method of Least Squares and Principles

of the Theory of Observations. Trans. by Elandt, R.C.,

New York: Pergamon.

Rice, J.R. {1964]: The Approximation of Functions.

Reading, Mass: Addison-Wesley.

Roos, C.F., [1937]: "A General Invariant Criterion of Fit
for Lines and Planes where all Variates are Subject to

Error", Metron, Vol. 13, No. 1, pp. 1-20.

Taylor, A.E. [1955]: Advanced Calcuwlus., Boston: Ginn.




37

4) L, approximation (continuous least squares) is direc-
tion dependent. A direction of measurement 8, is equivalent
to a rotation of the coordinate system by an angle g, the
counterclockwise direction taken as positive. If the function
"f is still a function in the rotated frame of reference, then
the L, error is well defined. If P is the set of angles B
where the L. error is well defined and positive, and if £
has no straight line segments, then P is closed. The solution
for B%* leads to a fifth degree equation in tan B. When P is
closed R* exists and is one of the solutions of the fifth

degree equation or is one of the end points of P.




