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Recently there has been an 
increasing trend in the quantitative 
finance community to call for 
statistical models which explicitly 
model returns with non-normal 
probability distributions (e. g., 
Sheikh and Qiao 2009, Bhansali 
2008, Harvey et al 2004).  In this 
paper we explain why summary 
rejection of normal distributions 
is almost always ill-advised.  
We first examine some of the 
motivations for using normal 
models in financial applications. 
These models can account for 
non-normal return distributions 
despite their normal model 
components.  We then demonstrate 
some consequences of switching 
to more complicated and less 
well-known non-normal models.  
These models almost always 
have more parameters to fit from 
the same data.  All else being 
equal, rational investors should 
prefer parsimonious models, 
especially when the historical 
signal is weak, as is often the 
case in finance.  We survey the 
shortcomings of several popular 
non-normal financial modeling 
techniques, especially when 
implemented naïvely.  Although 
certain problems may warrant 
the use of other statistical return 
distributions, we argue that it 
is still important to exhaust the 
possibilities of normal models 
before switching to them. Models 
with normal distributions can be 
extended through methods such as 
conditioning on other variables, 
inequality constraints, mixtures, 
integration and resampling 
over unknown parameter 
distributions, or in some cases 
nonlinear transformations.  The 

mathematical properties of the 
normal distribution facilitate 
these model-building techniques 
and allow for thorough post-
analysis and model validation 
to ensure the best choice for 
the final model.  Because of 
the preceding arguments, we 
reject the popular fallacy that 
because return distributions 
have marginal non-normal 
distributions, normal models 
cannot be valid or useful.
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Since the global market downturn 
in the fall of 2008, there has 
been growing concern in the 
quantitative finance community 
that statistical models for return 
distributions are not sufficiently 
accounting for downside risk and 
negative skewness (e. g. Anson 
et al 2007, Bashki et al, 2003, 
Harvey and Siddique 2000a, 
2000b, Martin and Spurgin 
1998, Mills 1995, Peiro 1999, 
Sears and Wei 1985, Taylor et 
al 2009, Sortino and Price 1994, 
McDonald and Affleck-Graves, 
1989, Kat and Miffre, 2008, 
Fuertes et al 2009). Several 
recently published whitepapers 
claim that by using advanced 
statistical methods such as 
“Extreme Value Theory”, “Higher 
Moments”, and “Gaussian 
Copulas,” among others, one 
can somehow better prepare for 
extremely negative returns yet 
invest optimally over the long 
term (e. g., Sheikh and Qiao 
2009, Bhansali 2008).  While it 
is true that advanced methods 
can account for these extreme 
events, using these methods for 
investment management can 
easily backfire for the investor.  
This paper will describe some of 
these techniques and explain why 
they so often fall short.  

In Section 1 we briefly describe 
why normal distributions are 
often used as a framework for 
investment practice.  In Section 
2, we discuss the advantages 
of parsimonious models over 
complicated ones, especially when 
used in out-of-sample prediction.  
In section 3, we discuss some of 
the issues associated with higher 

moments, why using estimates 
for skewness and kurtosis in 
models can be dangerous, 
and how even relatively tame 
normal models can explain data 
with various levels of skewness 
and kurtosis.  In section 4, we 
discuss Extreme Value Analysis 
as well as other methods of 
analyzing tail behavior and 
extreme events.  In section 5, 
we discuss the popular notion 
that correlations go to 1 during 
turbulent markets, and why 
this should not cause a rational 
investor to drastically change 
strategies, especially right after 
catastrophic events.  In section 
6, we discuss some advantages 
of using the normal distribution 
in statistical models, and why 
we should not discard one of the 
most useful and well-researched 
tools for statistical modeling. In 
section 7, we discuss Gaussian 
Copulas, a technique which has 
been popular in the last decade 
in the derivatives market, 
which attempts to transform 
joint probability distributions 
to multivariate normal and 
back to calculate conditional 
or marginal properties.  This 
calculation is often erroneous 
and can have unforeseen 
negative consequences.  In 
section 8, we provide a brief 
survey of the many situations 
when non-normal models might 
in fact be useful.  In the final 
section, we summarize and 
make conclusions.
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For many practicing financial 
economists, maximum expected 
utility of terminal wealth 
is the framework of choice 
for rational decision making 
under uncertainty.  Optimized 
portfolios, in this framework, 
begin with a specific utility 
function and an assumed return 
distribution.  

In contrast, in practical 
applications, Markowitz 
(1959) mean-variance (MV) 
optimization is often used to 
define portfolio optimality.  
One important reason is that 
Markowitz MV optimization 
allows linear inequality as well 
as equality constraints in defining 
an optimal portfolio.  Analytical 
solutions are not available for 
most practical applications.  

A common critique is that 
Markowitz optimization requires 
a normal return distribution 
assumption.  Almost any analysis 
of historical return data finds 
that the normality assumption 
is violated (e.g. Fama 1965, 
Rosenberg 1974, 1976).  
Consequently many analysts 
have proposed alternatives to the 
normal assumption.  There are 
many issues that go beyond the 
scope of this article.  However, it is 
worth pointing out that the proper 
interpretation of Markowitz MV 
optimization is as a very useful 
approximation to expected utility 
maximization for many utility 
functions in investment practice 
(Levy and Markowitz, 1979).  
There is also the additional 
issue of estimation error of 
utility function parameters that 

can adversely affect optimality 
based on complicated or hard to 
estimate parameters (Rubinstein, 
1973, Michaud and Michaud 
2008, Ch. 3).  From a practical 
point of view, Markowitz MV 
optimization allows non-linear 
constraints where the normal 
return distribution framework 
works as a very convenient 
approximation to expected utility 
maximization.  Critiques of the 
normal distribution assumption 
in portfolio optimization should 
properly understand its valid 
foundational and important 
practical benefits for investment 
practice.  

While empirically historical 
returns generally do not 
conform to normal distribution 
assumptions, proper 
interpretation of these results 
may be useful.  Rosenberg 
(1974) attributes non-normality 
to the likely existence of mixed 
normal return distributions.  
From a practical point of view, 
Rosenberg’s insight suggests 
that within a regime normality 
works quite well but overlapping 
normal regimes result in hiding 
the approximate normality 
(within estimation error) of 
historical returns.  The notion 
is that the mean and variance 
do approximate investors’ 
expectations at any point in time 
but that the returns and variances 
vary over time.  In this context 
a normal return distribution 
assumption is often appropriate 
for risk-return estimation at a 
given point in time.  
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Complex models have a 
tendency to overfit data.  The 
more a model specifically 
fits the sample data, the less 
likely it is to fit future data 
not contained in the sample. 
There simply is not enough 
information in a small dataset to 
fit more than a few parameters. 
Financial data used for asset 
allocation or equity portfolio 
optimization may not contain 
many observations, because 
the markets are constantly 
changing and information 
becomes stale over time.  
When too many parameters are 
fit to a sample with not enough 
data, the model begins to fit 
the noise instead of the signal.  
Statisticians have devised 
criteria for choosing among 
models that often include a 
measure of model fit minus a 
penalty for model complexity 
(e. g. Akaike 1974, Schwartz, 
1978).  The optimal model for 
a dataset will simultaneously 
smooth out noise and 
detect information.  Overly 
complicated models try to 
extract too much information 
from the data, resulting in a 
fitted model that is polluted 
with idiosyncratic noise and 
will perform poorly going 
forward.  The argument here in 
favor of parsimony is a variation 
on the classic Occam’s razor 
argument against unnecessary 
complexity in choosing among 
explanatory hypotheses.

Shrewd investors are always 
skeptical of claims that a 
complicated model will result 
in superior future performance.  
Although complicated models 
will almost certainly outperform 
more parsimonious models on 
the data from which they are 
fitted, their performance will 
suffer when subjected to new 
data.  Even a very good model 
will suffer if it is reduced to 
a point estimate output, and 
put through an optimizer.  It 
is often necessary to average 
over a distribution of potential 
outcomes to achieve optimal 
average out-of-sample (future) 
performance.  Resampling is a 
useful statistical technique for 
extracting information from 
risk-return point estimates.  
Michaud Resampled 
Efficiency™ optimization 
takes into account many 
possible outcomes, and the 
resulting allocations, although 
they appear not to perform as 
well when measured against 
the sample data, are designed 
to be effective averaged over 
multiple outcomes.  This 
means that they are designed 
to perform well over many 
return periods, because they 
take into account many 
possible outcomes (Michaud 
and Michaud 2008a,b).

NEW FRONTIER
by David Esch, Ph.D.
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2 Non-Normality Facts & Fallacies
Higher 

Moments 
Have Greater 

Estimation 
Error

3
Financial models often fit 
historical datasets which 
compromise between too little 
and too much data.  Many 
applications use as little as five 
or ten years of historical return 
data.  Less than a certain amount 
may have too little information 
and more may have too much 
stale information. 

Some practitioners have 
been recommending the use 
of “higher moments” for 
fitting statistical models.  
The problem with using the 
moments directly in analyses is 
that with a relatively small data 
size, higher moments become 
wildly unstable when estimated 
directly from sample data.  
Moments are calculated from 
modified averages of higher 
powers of the observations.  For 
example, the skewness, or third 
moment, is calculated from an 
average of the third power of 
the data points.  Similarly, the 
kurtosis, or fourth moment, 
uses an average of the fourth 
power of the data.  Outliers 
in a dataset are even further 
removed from the rest of the 
data when these powers are 
taken, and can become highly 
influential, creating large 
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Figure 1: A family of probability density curves with fixed 
mean and variance, and varying skewness.

sampling errors in the sample 
skewness and kurtosis.
Additionally, practitioners 
often misunderstand the 
implications of changing 
the higher moments while 
keeping lower moments fixed.  
Adding negative skewness to a 
distribution while keeping the 
mean and variance fixed will 
shift the bulk of the distribution 
positively.  Similarly, adding 
positive skewness to a 
distribution while keeping the 
mean and variance fixed will 
shift the bulk of the distribution 
negatively.  It is said (Harvey, et 
al, 2004) that “most agree that 
ceteris paribus investors prefer 
a high probability of an extreme 
event in the positive direction 
over a high probability of an 
extreme event in the negative 
direction.”  The investors in 
this case do not realize that 
“ceteris paribus” means that 
most of the time they will 
underperform their peers who 
prefer zero or negative-skew 
return distributions.  Figure 1 
shows the effect of increasing 
skewness, while holding the 
mean and variance fixed.  The 
peak of the distribution shifts 
to the left.  The effect of this 
shift is that random draws from 
the distribution will generally 
be of lesser value, and will be 
balanced only when an extreme 
event happens.  Few rational 
investors would willingly opt 
for a strategy that underperforms 
their peers during times of 
market stability.  In fact, fund 
managers are routinely fired for 
such underperformance. 
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Non-Normality Facts & Fallacies

3: Higher Moments Have Greater Estimation Error

There is a similar tradeoff between kurtosis and variance. 
Holding the variance constant while increasing the 
kurtosis, making the tails of the distribution fatter, 
will result in a portion of the probability mass being 
concentrated in the center of the distribution. This means 
that the fatter tails must be balanced by a less variable 
center to keep the variance constant. Figure 2 illustrates 
a family of probability density curves with fixed mean, 
variance, and skewness. The kurtosis is different for each 
of the five curves. The most fat-tailed distribution here 
is the most peaked in the center. The differences in the 
tails are hardly visible in this chart here, but would be 
clear under magnification. The most visible effect of 
increasing the kurtosis, all other things held constant, 
is the gathering of probability mass in the center of the 
distribution. Most investors would balk at the increase in 
risk inherent in fattening the tails of the return distribution 
without narrowing the center.
The message here is twofold: higher moments are badly 
estimated, and there is no “free lunch.” That is to say, 
increasing the skewness or kurtosis also has a substantial 
effect on the behavior of the main probability mass in the 
center of the distribution, not just on the tails. Furthermore, 
attempting to estimate higher moments from samples 

may substantially increase error in estimating the lower 
moments.

Strangely enough, the normal distribution may produce 
samples with a substantially large skewness and/or 
kurtosis. Table 1 shows the ranges of skewness and kurtosis 
for samples of normal variates, and we one can see that 
even samples of size 1000 produce a range of estimated 
skewness and kurtosis.

Table 1: Quantiles of sample skewness and kurtosis from normally distributed simulated datasets. Note that even samples 
of size N=1000 have a range of estimated skewness and kurtosis. Normal distributions theoretically have skewness 0.0 and 
kurtosis 3.0.

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

Figure 2: A family of probability densities with fixed mean, 
variance, and skewness. The kurtosis is different for each 
curve, and the most leptokurtotic distribution has the 
sharpest peak in the center.

NEW FRONTIER
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Kurtosis

-1.3138 -0.9845 -0.8162 -0.6465 -0.5626 -0.4600 -0.3669 -0.2965 -0.2547 -0.2047

-1.1258 -0.8743 -0.7274 -0.5846 -0.4994 -0.4128 -0.3325 -0.2686 -0.2271 -0.1870

-0.9485 -0.7082 -0.6011 -0.4948 -0.4164 -0.3391 -0.2704 -0.2323 -0.1854 -0.1554

-0.7768 -0.5807 -0.5007 -0.4060 -0.3447 -0.2816 -0.2254 -0.1901 -0.1542 -0.1303

-0.5906 -0.4377 -0.3852 -0.3113 -0.2689 -0.2198 -0.1721 -0.1458 -0.1204 -0.1017

-0.3079 -0.2294 -0.2030 -0.1582 -0.1383 -0.1133 -0.0900 -0.0769 -0.0649 -0.0522

-0.0067 -0.0023 -0.0004  0.0000 -0.0010  0.0004  0.0032 -0.0018  0.0004  0.0001

 0.3047 0.2370 0.2008 0.1662 0.1344 0.1125  0.0937 0.0749 0.0621 0.0524

0.5910 0.4485  0.3833 0.3189  0.2616  0.2171  0.1837  0.1459  0.1219 0.0994

0.7631  0.5926  0.4956 0.4059  0.3340  0.2787  0.2328 0.1833 0.1559 0.1256

 1.5953 1.8343  1.9707 2.1085 2.2410  2.3305 2.4268 2.5067  2.5888  2.6473

 1.6408  1.8989  2.0293 2.1600  2.2822 2.3752  2.4657  2.5492  2.6231  2.6842

 1.7359  1.9836 2.1154 2.2403  2.3561  2.4407 2.5321 2.6008 2.6695  2.7228

1.8296  2.0706 2.2072 2.3098 2.4249 2.5096 2.5884 2.6536 2.7133 2.7623

 1.9565 2.1858  2.3128  2.4140 2.5107  2.5879 2.6611 2.7135 2.7644  2.8072

 2.1973  2.4018  2.5238 2.6098 2.6784 2.7397  2.7891 2.8253 2.8569  2.8881

2.5494  2.7141 2.8024  2.8599  2.8945  2.9327  2.9514 2.9622 2.9706 2.9850

 3.0482 3.1364 3.1693  3.1700 3.1657  3.1614  3.1335 3.1215  3.1060 3.0946

3.6612 3.6510 3.6040  3.5304  3.4782 3.4095 3.3384  3.2859  3.2408 3.1973

 4.1651 4.0322 3.9399 3.8019  3.6861  3.5808  3.4763  3.3876  3.3237 3.2649

Sample Size

Quantile

0.005

0.010

0.025

0.050

0.100

0.250

0.500

0.750

0.900

0.950

Skewness Sample Size

20 40 60 90 135 200 300 450 667 1000

Quantile

0.005

0.010

0.025

0.050

0.100

0.250

0.500

0.750

0.900

0.950

20 40 60 90 135 200 300 450 667 1000
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Conditional Value at Risk, or 
CVaR, is defined as the mean 
of the upper (or lower) portion 
of a sample.  Since this statistic 
is a descriptive measure of tail 
behavior its use in finance has 
been gaining popularity (e. g. 
Embrechts et al 1997, Embrechts 
2000, Cakick and Foster 2003, 
Einmahl et al 2005, Jorion 
2007, Dowd et all 2008).  CVaR 
is also known as “expected 
shortfall” (Acerbi, et al, 2001).  
For example, in a sample of 100 
points, the CVaR95 is defined 
as the average of the five points 
with the largest values.  This 
statistic can be a useful measure 
of tail behavior.  However, 
there are problems with using 
the CVaR95 to fit models and 
optimize portfolios.  First, it 
may not directly measure the 
quantity of interest.  Consider 
two datasets of 100 points: 

Clearly (2) would be preferable 
for any rational investor even 
though both datasets have the 
same CVaR. 

Additionally, even though CVaR 
is being used only to fit the tail 
of the distribution, it may not 

adequately summarize utility 
to the investor.  Five spread out 
points or five equal points as the 
top five percent in a dataset of 100 
points would have equal CVaR95, 
and it is not clear that they should 
all be considered equally in terms 
of risk.

Again, CVaR can be a meaningful 
descriptive summary, but it 
collapses too much of the 
information in the data to be 
useful for fitting many models or 
as a surrogate for approximating 
many expected utility functions.

Extreme events occur from time 
to time even under relatively 
conservative risk models. By 
nature, extreme events are unusual 
events.  Eliminating risk altogether 
is impossible when investing, 
so by attempting to remove risk 
from extreme events it is being 
transferred elsewhere paid for in 
lower expected returns.  Studying 
these events and modeling them 
statistically is helpful when the 
knowledge can be combined 
effectively into the entire system 
without distorting the other parts 
of the analysis.  Separate analyses 
on the outliers and the central 
values of a distribution are likely 
to get both parts wrong if they are 
not done well.

4 Extreme 
Value       

Analysis 
& CVaR

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..

(1) the lower 95 points    all have 
-10% return and the upper 5 
points have +15% return; and 
(2) the lower 95 points all have 
+10% return, and the upper 
5 points have +15% return.
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It has been repeated often recently 
in the world of finance that assets 
become highly correlated during 
extreme events.  All assets move 
up and down together.  This 
phenomenon can be observed 
during turbulent times in the 
market, and it leads investors to 
fear that diversification benefits 
are disappearing.  However, a 
thoughtful analysis may shed 
some light on this phenomenon 
and reduce the fear associated 
with this statement.  Returns can 
be thought of as the net effect 
of many component forces.  
Sometimes certain system-
wide effects may dominate all 
the returns of a set of assets.  
These systemic shocks to the 
returns, because of their large 
magnitudes, will indeed produce 
a large measured correlation 
close to one when the assets’ 
returns are considered together.  
However, net of this dominating 
effect, there are idiosyncratic risk 
factors within assets which will 
be once again observable after 
the storm.  When datasets are 
corrected for systematic effects, 
the “correlations go to one” effect 
will largely disappear.  In other 
words, a returns from suitable risk 
models do not show correlations 
going to 1 during extreme market 
volatility.  It should also be 
mentioned that this effect applies 
equally to upmarkets as it does 
to downmarkets. Investors are 
probably less likely to complain 
about the systematic effects when 
they benefit from them. 

Standard financial models such as 
the Capital Asset Pricing Model 
(CAPM) (Treynor, 1961, Sharpe, 
1964, Black, et al, 1972, French, 
2003) and Arbitrage Pricing 
Theory (APT) (Ross, 1976) do 
an excellent job of explaining the 
effects of systematic risk.  Both 
predict that, even in the presence 
of such risk, the best strategy 
remains a diversified portfolio.

The fact that certain systematic 
market risks dominate the 
observed returns has little impact 
on the optimal strategy.  Assuming 
that it is impossible to predict 
the market, everyone suffers (or 
benefits) when there is a shock to 
the market.  It remains advisable 
to be diversified simply because 
a non-diversified portfolio is 
making active bets, leaving the 
investor exposed to diversifiable 
risk.  In the absence of good 
information motivating these bets 
it is not sensible to make them.

5 “Correlations 
go to one”
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Quantitative managers must 
care about mean and variance 
of their portfolios. This is 
because the mean and variance 
are excellent summaries of 
the center and precision of a 
probability distribution.  They 
use information from all the 
data. Using only part of the 
data is only advisable when that 
portion of the data contains the 
only relevant information for the 
analysis  When analyzing noisy 
financial data it is wise to use 
as much of the data as possible.  
When the mean and variance are 
of interest, as is usually the case 
with financial data, it makes sense 
to use the normal distribution in 
statistical models for the data, 
since the mean and variance are 
the natural parameters of the 
normal distribution.

Normal models are useful even 
if they are wrong.  Normal 
models are commonly used to 
test for linear relations among 
observed variables.  Although 
the normal distribution itself 
is not necessary to extract 
correlations or regression 
coefficients themselves, the 
traditional hypothesis tests for 
these calculations rely on the 
normal model for residuals. It 
should be noted that with a good 
regression model, a non-normal 
or simply sparsely or unevenly 
observed input distribution can 
produce a highly non-normal 
response or output variable 
in spite of the normal model 
framework.  A vast literature 
exists on techniques to improve 

regression models to be more 
resistant to outliers; moreover, 
software tools are extremely 
well-researched and provide 
excellent feedback so that the 
results from these models can be 
considered carefully.  Thoughtful 
analysis with good software 
tools can produce useful results.  
Software for non-normal 
models is also available, but the 
tools for analyzing output and 
diagnosing potential problems 
are much more experimental 
and may not produce stable or 
valid results.  Many convenient 
properties possessed by the 
normal distribution do not 
carry over to more complicated 
distributions, so much more 
thorough model validation and 
diagnosis is required for non-
normal models. 

Non-normal models may be 
the right solution for certain 
problems and certain cases, but 
they should not be haphazardly 
or needlessly employed.  They 
require more care on the part 
of the analyst, and it usually 
makes sense to use them only 
after applying and rejecting the 
normal models.  Many times the 
normal models can be adapted 
to unusual circumstances, thus 
reducing the need to resort to 
more experimental non-normal 
models.

6 Normal 
Models 
and the 

Importance 
of Mean & 

Variance
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A class of non-normal models 
which has become fashionable 
lately is based on Gaussian 
copulas (e. g. Sklar 1959, 
Rüschendorf 1995, Nelson 
2006, Friend and Rogge, 2005).  
These copulas are essentially 
correlation matrices.  Analysis 
can be cased on multivariate 
normal distributions, and the 
results can be run through 
transformations to convert 
the normal marginal and/or 
conditional distributions of the 
individual variables to non-
normal distributions.  A problem 
with this type of analysis is 
that the normal distribution 
is the only distribution where 
the marginal and conditional 
distributions of the individual 
variables are also normal.  This 
means that the transformation 
to non-normal negates the 
validity of the analysis.  The 
errors created by doing this 
transformation are compounded 
when some variables are far 
away from center, and the 
more variables jointly analyzed 
using the copulas, the greater 
the chance of this type of error 
occurring.  Unfortunately, 
copulas are often used as 
a technique for including 
correlations in extreme value 
analysis, where the errors 
created by the nonlinearity 
of the transformation to non-
normality are at their greatest.  
Copulas are probably most 
effectively used as a tool for 
simulating jointly distributed 
non-normal variables, but the 

simulations should not be 
expected to obey the properties 
of a normal distribution, and 
the correlations among sets of 
variables will also be distorted 
by the transformations, 
especially in the tail areas.  
These copula analyses may 
be partly responsible for the 
popularity of the “correlations 
go to 1” mantra, since the 
incorrect analysis of the 
nonlinear relationships among 
variables could lead an analyst 
to underestimate the joint 
probability of failure in two 
separate situations, and thus 
believe that the correlations 
must be high in order to 
observe the systematic failure 
of so many situations at once.  
Copulas have been widely 
used to price derivatives 
(Burtschell and Laurent 
2009) and can be particularly 
wrong in estimating joint 
tail probabilities, especially 
when estimating joint default 
probabilities on collateralized 
debt-based securities (Li 2000, 
Jones 2009, Whitehouse 2005, 
Andersen 2007, Embrechts et 
al 2002, Laurent and Gregory 
2005).

7 Gaussian 
Copulas: 

Error-prone 
Calculations 

on Non 
Normal Data 

Using Normal 
Distribution 

Functions
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Certain situations absolutely 
necessitate the use of non-
normal distributions.  The study 
of quantities that naturally 
follow certain distributions 
absolutely warrants the use 
of those natural distributions 
in statistical models.  In 
fact, whenever anything is 
known to follow a certain 
distribution, it makes sense to 
use that distribution in a model.  
Although financial returns are 
known not to follow normal 
distributions, (Fama 1965, 
Rosenberg 1974, 1976, Fama 
and French 1992, Figelman 
2009, Richardson and Smith 
1993, and many others), they 
do not follow any particular 
other family of distributions 
either.  Although many 
practitioners have argued for 
modeling returns plus one as 
lognormal (e. g. Aitchison and 
Brown 1957, Elton and Gruber 
1974), there are considerable 
reasons why this model cannot 
be exactly true.  Not the least 
of these reasons is that there 
must be a probability mass 
at minus infinity to capture 
the nonzero population of 
companies or funds which go 
out of business, thus having a 
-100% return and a negatively 
infinite logarithm of one plus 
return. Others have modeled 
returns using non-normal stable 
Paretian distributions (e. g. 
Mandelbrot 1963), but nobody 
has presented conclusive 
evidence that returns actually 
do follow these distributions, 

which were chosen more for 
their convenient properties 
of closure under convolution 
(Levy 1937) than for accurately 
describing returns. Rather than 
directly changing the return 
distribution, a sensible way to 
better results is to model the 
known sources of variation 
rather than to substitute another 
incorrect distribution to 
directly model the data.  If data 
exhibits skewness, then what 
is causing the data to skew?  
Investigating the subtleties of 
the data-generation mechanism 
is generally a much more 
successful way to model 
data than simply applying a 
different model directly to the 
observations. 

S e v e r a l  n o n - n o r m a l 
probability laws arise directly 
from modeling data with 
normal distributions.  For 
example, sample variances of 
normally distributed random 
variables have scaled chi-
square distributions, which are 
a type of gamma distribution.  
Chi-square distributions and 
inverse chi-square distributions 
are used in Bayesian analyses 
for variance parameters 
since they arise naturally for 
normal models (e.g. Gelman, 
et al 2007, 1995).  The 
results of such analyses will 
also have inverse chi-square 
distributions.  Both chi-
square and inverse chi-square 
distributions are bounded 
below, skewed positive, and 

8 When Non 
Normal 

Models Are 
Appropriate
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Non-Normality Facts & Fallacies

8. When Non Normal Models Are Appropriate

have greater excess kurtosis than a normal 
distribution, yet they arise naturally as 
a result of a normal model for the data.

Similarly, T distributions, F distributions, 
and Beta distributions arise from 
simple functions of normal random 
variables.  “Non-central” versions of 
these distributions also occur naturally 
as the distributions of test statistics when 
the null hypothesis is false. All of these 
distributions are familiar and rather well 
known to the student of basic statistical 
models. They all also include normal 
distributions as limiting cases. 

Models can add complexity to all of 
these distributions though the processes 
of nonlinear transformation, convolution 
(adding together random variables), 
mixture (using random parameters), or 
constraint (limiting the allowable values).  
The combination of these processes can 
yield almost any shape for a distribution.  
A good example of a complex model 
generated from simple components is the 
Michaud Resampled Efficient Frontier 
produced with the New Frontier Advisors’ 
Optimizer.  By constraining, mixing 
over different parameter values, and 
transforming over the nonlinear function of 
producing Markowitz Efficient Frontiers, 
a complicated result which has quite 
non-normal features is generated from 
simple normally-distributed components. 
Although non-normal distributions can 
also be used to model the data, they are 
not necessary in order to account for non-
normal features in the output.
More complicated distributions have 
been proposed to directly model data 
as skewed and/or heavy tailed.  Some 
examples of these distributions are the 
Skew-normal, Skew-T, Pearson type IV, 

Inverse-Gaussian.  The complete list is 
infinite since there are infinitely many 
possible non-normal distributions, of 
which only a few have been named or 
studied.  Models using these probability 
laws may have desirable properties in 
certain situations but they are often little-
known and not well-researched.  They 
should be considered when there is a good 
reason why they should be better than the 
standard set of models.
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Figure 3: A family of scaled chi-squared distributions. This 
family arises as the distribution of variances in normal 
models.



It is easy to be overwhelmed 
by everything encompassed 
by “non-normality,” since the 
term is only specific about 
what it is not.  It almost seems 
deliberately chosen to describe 
what is not understood and 
make excuses for poor past 
performance.  It is hoped 
that the reader of this article 
will gain some perspective 
and look on claims of model 
improvement simply through 
rejecting normal distributions 
with some skepticism. 

Now as much as ever, it is 
important to stay on course with 
a balanced investment strategy 
and not react irrationally 
to recent market turmoil.  

Changing mathematical models 
to arbitrarily more complex 
ones could be a big mistake for 
an investor.  Careful, sensible 
analyses which balance many 
outcome scenarios will win 
on the average when played 
out over future, out-of-sample 
returns.  When it comes to 
marketing materials designed 
to impress and intimidate in an 
attempt to explain or conceal 
poor performance, caveat 
emptor.

2 Non-Normality Facts & Fallacies
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